AW2400iTR

USER’S MANUAL

2.4 GHz Indoor Wireless Ethernet Radio
Thank you for your purchase of the AW2400iTR Indoor Wireless Ethernet Radio.

The AW2400iTR includes:
(1) AW2400iTR radio in extruded aluminum box
(1) AW2-2400 2.5 dBi omnidirectional antenna
(1) AW-POE Power Over Ethernet Injector
(1) 110 VAC to 12 VDC Power Adapter

The AW2400iTR-PAIR includes:
(2) AW2400iTR radios in extruded aluminum box
(2) AW2-2400 2.5 dBi omnidirectional antennas
(2) AW-POE Power Over Ethernet Injectors
(2) 110 VAC to 12 VDC Power Adapters

TABLE OF CONTENTS
Quick Start Guide ........................................... 4
Operational Summary Page ................................. 5
Physical Setup Page ......................................... 5
Digital Setup Page ........................................... 6
LCD Display .................................................... 11
Technical Specifications ................................ 13
Radio Status Information ................................ 14
Antenna Alignment Guide ................................. 15
Transmitter to Receiver Placement ...................... 17
Abbreviation Guide .......................................... 17

If you have any questions when configuring your AvaLAN system, the best place to get answers is to visit www.avalanwireless.com. You will also find the latest updates there. If more assistance is needed, send email to support@avalanwireless.com.

To speak to a live technician, please call technical support at the number below during normal business hours.
Compatible Accessories

Antennas

AW2-2400
2.4 GHz Omnidirectional
2.5 dBi Antenna

AW19-2400
2.4 GHz Directional 19 dBi
Panel Antenna

Accessories

AW-12VA
Auto Adapter

AW-LA
Lightning Arrestor

Warranty

AW-Warranty-2400

These items can be found on our website, www.avalanwireless.com
Quick Start Guide

PROGRAMMING:

**Step 1.** Gather the AvaLAN radios, power supplies, 2x CAT5 cables and a computer with an RJ45 Ethernet interface.

**Step 2.** Connect the radios one at a time directly to the PC via an Ethernet cable. Set your computer to an IP address of 192.168.17.1 (refer to page 6 for detailed instructions). Enter the radio’s default IP address* of 192.168.17.17 into a web browser.

**Step 3.** Enter the password and click login. The default password is “password”.

**Step 4.** Click “advanced admin” at the bottom of the web page.

**Step 5.** Toggle to select the device type - Access Point or Subscriber Unit. An access point (AP) can communicate with up to 16 Subscriber Units (SU).

- For the AP, enter the maximum number of SUs communicating with the AP.
- For each SU, set the subscriber ID incrementing from one. (Ex. 1, 2, 3, etc.)

**Step 6.** Enter the “Network Name” and “Encryption Key” using numbers “0-9” and characters “A-F”. All radios in a single network must have the same “Network Name” and “Encryption Key”.

TESTING:

We recommend connecting and powering up the units on the bench before deploying in the field. During bench testing, keep the radios at least 10 feet apart to prevent overload of radio receivers.

**Step 1.** Power on all the radios with the computer wired directly to the AP.

**Step 2.** Use the AvaLAN IP finder utility to assign a unique IP address to each radio. (See page x)

**Step 3.** Open a web browser to view the operation of all the radios. (See page y)

**Step 4.** Perform PING flood testing to simulate network data and observe overall performance.

INSTALL:

Every installations is different, however radio performance is typically best at shorter distances using directional antennae with unobstructed paths in low noise environments. It can be challenging to determine the best approach for a unique installation. The radio’s browser interface has a link performance statistics and a spectrum analyzer display that is helpful for troubleshooting radio interference noise levels. (See page 9).

Please call AvaLAN Technical Support for assistance as needed.
Operational Summary

The AW2400iTR Radio allows the user to create a long-range, wireless Ethernet network with up to 16 subscriber units per access point. The configuration may include any combination of AW2400xTR and AW2400xTP radios. (Please note that older AvaLAN 2.4 GHz radios can exist on the same LAN but cannot be used to form wireless links with the AW2400iTR units because link encryption protocols have changed.)

Configuring a wireless link with the AW2400iTR requires the establishment of six elements:

• Each radio must know whether it is to be an access point (AP) or subscriber unit (SU).
• Each radio must have an IP address that is unique among all others on the same network.
• The AP must know how many SUs are expecting communication with it.
• The AP and any given SU must agree on which radio frequency channel they are using. This can be manually set or allowed to change automatically.
• The SU must be assigned a unique subscriber ID to specify which time division slot it will use when communicating with the AP.
• The AP and any given SU must share a common 128-bit encryption key and 32-bit network name.

The access point (AP) automatically scans for the best of the 29 available radio frequency channels, encrypts Ethernet data received from the network, and transmits it wirelessly to the correct subscriber unit (SU). The AP is constantly monitoring the radio link and can automatically change the channel if performance is degraded due to interference. If two AP units are very close to one another, they may interfere if operating on adjacent frequency channels. Place them at least 10 feet apart and manually select non-adjacent channels for their operation. Also, the SU should be placed at least 10 feet from the AP to avoid overloading the radio’s receiver.

Any 10/100 BaseT Ethernet client device (ECD) can be connected to an AW2400iTR subscriber unit. Each SU encrypts Ethernet traffic received from the attached ECD and transmits the data wirelessly to its AP. Each SU can be plugged directly into an ECD without adding drivers or loading software. Essentially, once the AP/SU pair is configured and running, it behaves like a transparent Ethernet cable that encrypts and then passes all traffic including VLANs.

Physical Setup

1. Before placing the radio in its final location, it may be best to perform the digital setup procedure described in the next section.

2. Connect the AW2400iTR’s RP-TNC RF connector to a suitable antenna. A 2 dBi omni-directional dipole antenna (AW2-2400) is included and is suitable for testing and general applications. Application specific antennas are available if greater range and/or directionality is required. Choose one of our other antenna models that can be found on our website at www.avalanwireless.com.

3. Power is provided to the unit by means of the 110 VAC to 12 VDC 0.5A wall power supply.
Digital Setup

1. Digital configuration is done by means of the AW2400iTR’s built in browser interface. It should be powered on and connected at least temporarily to a network containing a computer that can run a conventional web browser.

2. Download the AvaLAN IP Discovery Utility from our website and extract ipfinder.exe from the zip archive, placing it on your desktop or in a convenient folder.

   http://www.avalanwireless.com/marketing_resources/downloads/ipfinder.zip

**Note:** This utility only runs on Microsoft Windows, not Linux or MAC. If you must use a non-Windows computer for configuration, make sure your subnet mask allows your computer to see 192.168.17.17. Connect to that default IP address with your web browser and continue the setup procedure with step 6.

How to configure static IP address for Windows 7.

Start > Control Panel > Network and Internet > Network and Sharing Center

Click local area connection

Click Properties

Double Click Internet Protocol Version 4 (TCP/IPv4)
Click “Use the following IP address”

Populate the following information:

- IP address: 192.168.17.17
- Subnet mask: 255.0.0.0
- Default gateway: leave blank

Click OK
Click OK
Click Close

3. Run the IP Discovery Utility, ipfinder.exe and you should see a window similar to the view on the next page.

The AW2400iTR should appear in the list at the default IP address of 192.168.17.17. If it does not, click “Search” to regenerate the list. If it still does not appear, it may be a connection issue and need to re-examine the cabling or you may have a subnet or firewall issue on your computer.
4. Double click the list item that refers to the AW2400iTR being configured. You should see a second window that is similar to this:

![Image of configuration window]

The information on the left is the current status of the radio, while the boxes on the right allow you to change it. It is important that the IP address of the AW2400iTR is in the same subnet as your computer. For example, if the subnet mask is 255.255.255.0, the first three number groups of the IP address must match. Choose the desired parameters and click “Apply.”

5. Make note of the chosen IP address and password, then click “Go to Device Web Page.” This will cause your default web browser to launch with the device IP address in the browser address bar. Or you may launch the browser on your own and enter the web page address manually: http://[the IP address you just set]. **Note:** You are not assigning a password, you’re matching the password that the unit has built into it.

6. The browser page that loads first shows the current device information and provides a login in the upper right. Log in using the password you just specified (or “password” if you kept the default). If the login succeeds, you will see an admin page similar to this:

![Admin page]

The Device Settings section is where the password, channel, DHCP (enable or disable), network parameters are defined and/or reconfigured.
7. The admin page has sections similar to the login page showing radio statistics and device information plus it adds several new sections. The Device Settings section allows setting the network information and choosing an RF frequency channel. The default is to allow the radio to choose its own frequency based on minimizing interference. If you set a fixed channel, make sure the AP and all SUs use the same one.

Scroll down in the Admin browser page to see these three additional sections:

1. A graphical spectrum analyzer display that may help you to manually select a radio channel

![Spectrum Analyzer Diagram]

If you need more information about the interpretation of this diagram please refer to our Spectrum Analyzer application guide.

2. A section to be used if an update to the AW2400iTR’s firmware is required

![Firmware Update Window]

3. An advanced links section

![Advanced Links Window]
8. On the Advanced Admin page, set the parameters as follows:
   - Choose Device Type: Access Point or Subscriber Unit.
   - For Subscriber Units, assign unique ID numbers in numeric order from 1 to 16.
   - For an Access Point, enter the number of Subscriber Units that will be communicating with it.
   - Choose an 8-digit hex (0-9 and A-F) Network Name that will be common among the AP and its SUs and enter it. The hyphen is required.
   - Choose a 32-digit hex encryption key and enter it. Again, the hyphens are required. This key must match between the AP and the SU so make a note of it as well.

After entering the parameters, click the “Apply” button to save them to the radio.

9. When all of the radios are keyed and operating, connect them to your network and Ethernet devices as desired and cycle the radio’s power to begin normal operation. Now, browser management of the SUs can be performed over the wireless network. **Note:** Avoid plugging actively linked radios into the same switch because this will corrupt the switch’s routing table and may cause network problems just as if you had plugged a CAT5 cable directly between two ports of a switch (commonly called a loop back).
**Technical Support**
(650) 384-0000
www.avalanwireless.com

**LCD Display**

**During boot up:**

1. **Current Version**
   
   ![Current Version Image]

2. **Serial Number**
   
   ![Serial Number Image]

3. **IP Address***
   
   ![IP Address Image]

**NOTE:** *When configured for DHCP mode, the display will look like the image above at boot up. If it fails to receive an IP address within 20 seconds, it will default back to the IP address used prior to reboot. The factory default IP address is 192.168.17.17. Once an IP address is assigned it will be displayed. When configured for static IP mode, the IP address will be immediately shown in the display.*

**After boot up LCD will display:**

- **Link Quality**
- **Up arrow (Transmit (TX))**
- **Down arrow (Received (RX))**
- **Device type: AP or SU**
- **Channel: CH (current channel)**
2.4 GHz Channels

<table>
<thead>
<tr>
<th>Channel</th>
<th>Center Frequency</th>
<th>Channel</th>
<th>Center Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Auto Mode</td>
<td>15</td>
<td>2.445833 GHz</td>
</tr>
<tr>
<td>1</td>
<td>2.416667 GHz</td>
<td>16</td>
<td>2.447917 GHz</td>
</tr>
<tr>
<td>2</td>
<td>2.418750 GHz</td>
<td>17</td>
<td>2.450000 GHz</td>
</tr>
<tr>
<td>3</td>
<td>2.420833 GHz</td>
<td>18</td>
<td>2.452083 GHz</td>
</tr>
<tr>
<td>4</td>
<td>2.422917 GHz</td>
<td>19</td>
<td>2.454167 GHz</td>
</tr>
<tr>
<td>5</td>
<td>2.425000 GHz</td>
<td>20</td>
<td>2.456250 GHz</td>
</tr>
<tr>
<td>6</td>
<td>2.427083 GHz</td>
<td>21</td>
<td>2.458333 GHz</td>
</tr>
<tr>
<td>7</td>
<td>2.429167 GHz</td>
<td>22</td>
<td>2.460417 GHz</td>
</tr>
<tr>
<td>8</td>
<td>2.431250 GHz</td>
<td>23</td>
<td>2.462500 GHz</td>
</tr>
<tr>
<td>9</td>
<td>2.433333 GHz</td>
<td>24</td>
<td>2.464583 GHz</td>
</tr>
<tr>
<td>10</td>
<td>2.435417 GHz</td>
<td>25</td>
<td>2.466667 GHz</td>
</tr>
<tr>
<td>11</td>
<td>2.437500 GHz</td>
<td>26</td>
<td>2.468750 GHz</td>
</tr>
<tr>
<td>12</td>
<td>2.439583 GHz</td>
<td>27</td>
<td>2.470833 GHz</td>
</tr>
<tr>
<td>13</td>
<td>2.441667 GHz</td>
<td>28</td>
<td>2.472917 GHz</td>
</tr>
<tr>
<td>14</td>
<td>2.443750 GHz</td>
<td>29</td>
<td>2.475000 GHz</td>
</tr>
</tbody>
</table>

Limited Warranty

This product is warranted to the original purchaser for normal use for a period of 360 days from the date of purchase. If a defect covered under this warranty occurs, AvaLAN will repair or replace the defective part, at its option, at no cost. This warranty does not cover defects resulting from misuse or modification of the product.
Technical Specifications

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SPECIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF transmission rate</td>
<td>1.536 Mbps</td>
</tr>
<tr>
<td>Ethernet throughput</td>
<td>935 Kbps</td>
</tr>
<tr>
<td>Output power</td>
<td>+21 dBm</td>
</tr>
<tr>
<td>Receiver Sensitivity</td>
<td>-97 dBm at 10^-4 BER</td>
</tr>
<tr>
<td>Range</td>
<td>40 miles line-of-sight with 19 dBi antenna</td>
</tr>
<tr>
<td>RF channels</td>
<td>29 non-overlapping channels with 2.0833 MHz spacing</td>
</tr>
<tr>
<td>Frequency selection</td>
<td>Automatic or manually selectable via web browser interface</td>
</tr>
<tr>
<td>RF Connector</td>
<td>RPTNC Female</td>
</tr>
<tr>
<td>Ethernet</td>
<td>RJ-45</td>
</tr>
<tr>
<td>Power Connector</td>
<td>P5 2.1 mm</td>
</tr>
<tr>
<td>Mounting</td>
<td>DIN rail clip</td>
</tr>
<tr>
<td>Power regulation</td>
<td>Built-in switching regulator</td>
</tr>
<tr>
<td>Browser management tools</td>
<td>Statistics, Network Settings, Spectrum Analyzer, Firmware Upgrade</td>
</tr>
<tr>
<td>Power consumption</td>
<td>Transmit: 1.7 Watts   Receive: 0.8 Watts</td>
</tr>
<tr>
<td>Voltage</td>
<td>9 to 30 VDC</td>
</tr>
<tr>
<td>Transmit current draw</td>
<td>140 mA at 12 VDC</td>
</tr>
<tr>
<td>Temperature range</td>
<td>-40º C to +70º C</td>
</tr>
<tr>
<td>Size</td>
<td>110 x 110 x 35 mm</td>
</tr>
<tr>
<td>Compatibility</td>
<td>Compitable with AW2400iTR and AW2400xTP radios</td>
</tr>
</tbody>
</table>
Radio Status Information

The Login or Admin pages of the radio’s built-in web browser interface provide many useful pieces of information that let you know how well the wireless link is working:

<table>
<thead>
<tr>
<th>Top of Web Page</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>Current version of the radio’s Ethernet interface.</td>
</tr>
<tr>
<td>MAC Address</td>
<td>Radio’s hardware MAC Address.</td>
</tr>
<tr>
<td>Ethernet</td>
<td>Status of Ethernet connection: 10 Mbps or 100 Mbps, full or half duplex, connected or disconnected.</td>
</tr>
<tr>
<td>Uptime</td>
<td>Total time radio has been active since last power cycle or hardware reset.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Device Information</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Type</td>
<td>Access Point (master) or Subscriber Unit (client)</td>
</tr>
<tr>
<td># of Subscriber IDs Issued</td>
<td>For Access Point only, up to 16 permitted.</td>
</tr>
<tr>
<td>Subscriber ID</td>
<td>For Subscriber Unit only, the ID selected for this radio.</td>
</tr>
<tr>
<td>Current RF Channel</td>
<td>The RF Channel in use. See table in this manual for center frequency.</td>
</tr>
<tr>
<td>Connected Subscribers</td>
<td>Access Point only, how many SUs are currently connected (16 maximum).</td>
</tr>
<tr>
<td>RF Connected</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Radio Active</td>
<td>Active or Standby</td>
</tr>
<tr>
<td>Product Code</td>
<td>4 for multi-point radio</td>
</tr>
<tr>
<td>Radio Version</td>
<td>Specific radio module in use</td>
</tr>
<tr>
<td>Radio Firmware Release</td>
<td>Current version of radio module firmware.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Statistics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Radio RSSI</td>
<td>Received Signal Strength Indicator. The radios operate best with this value between -30 and -80 dBm</td>
</tr>
<tr>
<td>Radio Block Error Rate</td>
<td>Should be less than 10% (check RSSI or spectrum scan if greater.) Higher values indicate degraded data rate, not necessarily lost data.</td>
</tr>
<tr>
<td>Radio Total Packets</td>
<td># of Ethernet packets received since last reset.</td>
</tr>
<tr>
<td>Radio Failed Packets</td>
<td># of packets unsuccessfully transmitted.</td>
</tr>
<tr>
<td>Radio Passed Packets</td>
<td># of packets successfully transmitted.</td>
</tr>
<tr>
<td>Radio Broadcast Packets</td>
<td>Traffic simultaneously addressed to all devices on the network.</td>
</tr>
<tr>
<td>Radio Unicast Packets</td>
<td>Traffic sent to a single destination.</td>
</tr>
<tr>
<td>Radio Average TX Size</td>
<td>Average bytes per packet transmitted.</td>
</tr>
<tr>
<td>Radio Average RX Size</td>
<td>Average bytes per packet received.</td>
</tr>
</tbody>
</table>
Antenna Alignment Guide

Please be sure to consider the following when installing antennae from AvaLAN:

**Vertical polarization**

Omni-antenna

*Figure 1*

Horizontal polarization

**Figure 2**

- Do not aim the omni-antennae directly at each other

---

www.avalanwireless.com
ATTENTION: When multiple 900 MHz antennas are installed in one area and face the same direction, antennas should be spaced a minimum of 12 feet apart. When multiple antennas are installed in one area and face different directions, antennas should be spaced a minimum of 5 feet apart.
Transmitter to Receiver Placement

If radios are installed either indoors or outdoors at distances closer than recommended, antennas can overpower each other and cause undesired effects. If testing radios within one or two feet, remove both antennas. The radios will still be able to signal each other at close distances. This applies to both indoor and outdoor units.

<table>
<thead>
<tr>
<th>ANTENNA</th>
<th>RANGE Maximum line-of-sight *</th>
<th>Maximum non-line-of-sight</th>
</tr>
</thead>
<tbody>
<tr>
<td>AW2-2400</td>
<td>1 mile</td>
<td>2 walls / 450 ft</td>
</tr>
<tr>
<td>AW19-2400</td>
<td>30 miles</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Abbreviation Guide

AP: Access Point
SU: Subscriber Unit
RF: Radio Frequency
RX: Receive
TX: Transmit
LCD: Liquid-Crystal Display
ECD: Ethernet Client Device
RP: Reversed Polarity
TNC: Need name of plug
IP: Internet Protocol
CH: Channel
DHCP: Dynamic Host Configuration Protocol