411 on IoT Sensors

October 17, 2019 at 8:00 AM

 

In this blog, we’ve talked about a lot of different aspects and parts of the Internet of Things (IoT) - from industrial IoT to antennas & IoT, and how the IoT is making the world safer, we’ve covered a lot of ground. Now, we’re going to take a look at IoT sensors. Along with all the “things” connected through the IoT, sensors can be enabled to collect information about the surrounding environment. Here is the info you need to know. 

 

IoT sensors capture data and deliver it to be stored and processed in the core network. They are offered in various sizes to best fit the application and can be designed to be discreet stand-alone products or integrate into another product. These sensors can be installed close to the point of use or at the edge of the network. Sometimes they are localized within a space, such as a building. Other times, they are a further distance away, like in a field. No matter the location, sensors in harsh environments must always be protected to maintain reliability and durability. The actual application will determine where the sensors are placed, as well as what type of sensor is used, how it sends back data and what data is collected.

 

Sensors are offered in mechanical, electrical, electromechanical, magnetic, electromagnetic, chemical or optical models. The type of data they collect is just as varied and which one you use depends on what your application requires. Data types include, but are not limited to: pressure, moisture, temperature, vibration, motion, chemicals, sound and speed. For precision data, the sensor will need higher accuracy. Geospatial tagging is required to collect data on location. And data that is time sensitive or mission critical might call for time tagging capabilities.

 

How often sensors capture data and when it gets sent back to the core network can also be adjusted depending on the application. Data can be collected as needed, during certain events, at predetermined intervals or continuously. That data can then be transmitted back (over a cable or wirelessly) as soon as it’s captured or only at specific times.

 

IoT sensors can be powered by an electric wire, solar power or batteries. The location of the sensors, how many are deployed and the amount of power used will largely determine the best power type for the application. It wouldn’t be feasible to change hundreds of batteries for sensors in a remote location. Just keep in mind that the more often the sensors send data, and the larger the files, the more power they’ll use.

 

There are a lot of variables to consider when choosing the right IoT sensor for your application, and now you should be well-versed in what to keep in mind.

 

5 things you need to know about MU-MIMO

October 3, 2019 at 8:00 AM

 

When you’ve got multiple devices using the same network, multi-user MIMO (MU-MIMO) is the way to go. MU-MIMO enables numerous Wi-Fi devices to receive multiple data streams at the same time. This is exceptionally more efficient than the single-user MIMO used by many routers. Here, we’ll take a look at the top 5 things you need to know about MU-MIMO.

 

1.      One-Way or Two-Way

 

Whether MU-MIMO is one-way or two-way depends on the Wi-Fi standard being used. MU-MIMO utilizes the 80211ac standard, which works solely with downlink wireless connections. Simultaneously sending data to multiple users is something that only wireless routers and APs are able to do. When the individual wireless devices are sending data to that router or AP, they have to take turns or separately use SU-MIMO to send multiple streams when it’s their turn. That said, multiple wireless devices will be able to receive data and be able to utilize simultaneous streams for sending data when 802.11ax Wave 2 comes into play.

 

2.      OFDMA Takes It Up a Notch

 

Orthogonal Frequency-Division Multiple Access (OFDMA) technology is part of 802.11ax and separates the channels into smaller segments so multiple devices can communicate at the same time. This technology compliments the capabilities of MU-MIMO. It organizes how the channels are used by allowing each device their own channel so they can coordinate when to talk more easily. While it is similar to MU-MIMO, OFDMA offers a different set of capabilities as it can be used in high density environments with low throughput or small-packet applications like IoT sensors.

 

3.      802.11ax (aka Wi-Fi 6) = Concurrent MU-MIMO Streams

 

The introduction of 802.11ax into the mix increases the number of users in a MU-MIMO group from four to eight. The ability to have more devices connected at the same time can improve throughput and make connections faster.

 

4.      2.4 GHz & 5 GHz are both Options

 

802.11n and 802.11ac limited MU-MIMO to the 5 GHz bandwidth, but with 802.11ax, MU-MIMO will now be able to use both the 2.4 & 5 GHz bands. While 2.4 GHz can only handle a maximum of three, small, legacy channels at one time, this improvement could allow faster speeds in the often overcrowded 2.4 GHz band.

 

5.      Benefits of Beamforming

 

MU-MIMO takes advantage of another feature of 802.11ac and 802.11ax, beamforming. This keeps signals from dispersing randomly in different directions by pointing it to the intended wireless devices. This, in turn, improves Wi-Fi speeds and ranges by using the signal more proficiently.

 

There you have it, five more reasons why MU-MIMO can be a game changer for your wireless network. To read more about MU-MIMO, check out more of our blog posts.

 

Gearing up for Wi-Fi 6

September 19, 2019 at 8:00 AM

 

I don’t know about you, but we are definitely looking forward to the debut of Wi-Fi 6 later this year. This next generation Wi-Fi standard improves on the current 802.11ac standard with more than just faster speeds. So let’s take a closer look at what’s in store.

 

First, Wi-Fi 6, also known as 802.11 ax, is backwards compatible with its predecessor, 802.11ac (now deemed Wi-Fi 5). Wi-Fi 6 was created to help support the increasing number of devices in today’s homes and businesses. If you have a lot of devices connected, several smart home devices or if you’re using virtual reality devices, a Wi-Fi 6 router might be a great fit.

 

So how fast is it? Wi-Fi 6 is capable of streaming up to 9.6 Gbps and has delivered transfer speeds of 1,320 Mbps in some tests. That is around 30%-40% faster than 802.11 ac, and for US customers, it will be 1,000% times faster than the current average download speed of 119 Mbps.

 

How is this possible? Wi-Fi 6 utilizes 1024-QAM to deliver more data and more efficiency, along with a wider 160 MHz channel for faster speeds. This new standard also takes advantage of 8x8 uplink/downlink, MU-MIMO, OFDMA and BSS Color for a capacity that is up to 4 times larger and able to handle more devices.

 

As with any Wi-Fi standard, much of the speed capability will depend on the speed being delivered by your internet service provider (ISP). In order to take full advantage of Wi-Fi 6 speeds, you’ll need a plan with your ISP that is capable of delivering high speeds, as your plan acts much like a speed limit on how fast your internet connection can go. Plus, you’ll need both a Wi-Fi 6 router and Wi-Fi 6 capable devices to benefit from Wi-Fi 6 speeds. So hold on tight, because Wi-Fi 6 capable routers and devices are already rolling out and are sure to become standard in next generation wireless devices.

 

Antenna Downtilt: A Practical Overview

June 13, 2019 at 8:00 AM

  

When managing cellular networks with multiple base stations, one of the toughest challenges for operators is mitigating inter-cell interference. As 5G implementation ramps up, this will become increasingly important as service providers look to strengthen networks to increase capacity.

 

To successfully densify, base stations must be able to reuse frequencies within their cellular clusters. This means that operators will need to have firm control over the radiation pattern of each antenna, as radiation sprawl will result in electromagnetic interference and poor quality communications.

 

One of the best ways to stop radiation sprawl is downtilt – a process that directs the antenna’s vertical pattern towards the ground. Downtilt can be accomplished by using these two methods:

 

Mechanical Downtilt:

This is the fastest and easiest way to control an antenna’s pattern. It involves physically adjusting the pole-mounting brackets of an antenna by using a digital level against the back of the antenna for an accurate measurement. The downside of this method is that it will create an effect called pattern blooming, which reduces the signal more at bore sight and less at angles away from bore sight.

 

Electrical Downtilt:

Another way to change an antenna’s radiation pattern is by introducing an electrical phase taper inside of a sector antenna array. Electrical downtilt allows for a uniform reduction in coverage, preventing pattern blooming from happening. There are three types of antennas electrical downtilt antennas: fixed, variable and manual. The values of fixed electrical downtilt antennas cannot be changed after design and factor in the antenna’s elevation beamwidth along with other deployment dynamics. Antennas with variable electrical downtilt can be changed remotely. Manual electrical downtilt antennas are set with a tuning knob during installation, or they can be adjusted by a second tower climb if needed. While electrical downtilt prevents pattern blooming, variable and manual electrical downtilt antennas are usually more expensive and reduce antenna gain.

 

To check out our extensive line of antennas, click here.

 

Embedded Antennas and the IoT

May 2, 2019 at 8:00 AM

 

In the not so distant future, the world will be fully automated with machines being able to communicate with little or no interaction from humans, thanks to the arrival of the Internet of Things (IoT) and the use of embedded antennas.

 

These small form factor antennas are a perfect fit for the shrinking size of IoT devices, while still being able to keep up with the massive amounts of data that will need to be transmitted as the IoT connects physical devices with software based management and control applications.

 

Embedded antennas are small, yet powerful antennas with many offering multiband support for use in mobile and fixed data applications. Their key performance attributes include high efficiency, low power consumption, low return loss and isolation.

 

High efficiency brings better signal reception, improving the system’s ability for faster data transfer rates. Reduced power consumption allows for increased longevity. Less return loss means more power transmitted, and isolation limits the amount of crosstalk interference. Embedded antennas can work with high-frequency or low-frequency systems, some feature MIMO technology and smart antennas have been introduced that feature embedded GPS and Flash memory capabilities.

 

As IoT deployments get underway, there are more embedded antenna options to consider to take full advantage of this exciting era of automation.

 

To help you succeed with your IoT implementations, we offer a full line off-the-shelf, embedded antennas ready to ship the same-day, plus custom designed antennas to suite all of your IoT needs.

 

© L-com, Inc. All Rights Reserved. L-com, Inc., 50 High Street, West Mill, Third Floor, Suite 30, North Andover, MA 01845