Smart Homes - The Future is Here

September 20, 2018 at 10:00 AM

 

Long ago, the idea of a home having the technology to be interactive was only a possibility in a Hollywood production or sci-fi novel. But those days are gone, the future is here and smart homes have moved from the realm of fantasy to an endless world of possibility. With the development of the Internet of Things (IoT), the world in general is becoming smarter and safer, and that includes our homes. Here, we’ll take a look at the technology behind the innovation bringing technological magic to your home.

 

First, what is a smart home? A smart home is automated, much in the way your coffee pot or your air conditioner are automated to turn on at a certain time or temperature. But a smart home takes that one step further by connecting all of those automated devices in your home through a wireless network, they are then able to be monitoring and programmed from one device. It is that communication with the devices that makes it smart. The devices in a smart home all rely on connectors and sensors to transmit and relay signals. Most wireless home automation uses low-power equipment so that power supply is not an issue.

 

To connect all of these devices, a combination of long and short-range wireless communication protocols is used, such as Wi-Fi, Bluetooth, ANT and ZigBee. With this technology, along with smartphones and tablets, we are now able to connect a multitude of devices within the home, this includes TVs, heating and cooling systems, lighting, appliances, security systems and cameras, or anything else that can be connected to the network. Plus, the communication to these devices is not distance limited, meaning you can control or change your thermostat while you’re at work or traveling using WAN connectivity via a router. Many new homes are being constructed with this technology built-in, older homes can be retrofitted with smart technologies and there are devices from companies like Google and Amazon that will connect to many electronics within your home.

 

Why would someone want a smart home? For one, it can make life a lot easier. Being able to control the devices within your home from your smartphone is super convenient. There is also an additional level of safety added when you’re able to monitor your home through a connected security network. Video cameras can provide surveillance in and around the home, with smart locks you can allow repairmen into your home and you are able to monitor when children get home from school. For people with disabilities or limited movement, smart homes that allow them to manage the home environment from a single, mobile device can make life much easier. In addition to safety, smart homes can be very energy efficient, which is good for the environment. Being able to control the thermostat remotely and turn lights and appliances on or off can be a great way to save energy.

 

With the growth of the IoT and more things becoming connected, it is no wonder that this would apply to our homes as well. Not only do smart homes provide convenience, they can also be good for the environment and give assistance to the disabled. Lucky for us, we no longer have to wait for the home of the future, the future is now. 

 

GigE Vision – A Clear Standard

July 19, 2018 at 8:00 AM

 

As big data has gotten bigger and bigger, so have vision applications. GigE Vision is a global interface standard designed to support the transmission of high-speed video and related control data over Ethernet networks that include GigE, 10 GigE and 802.11 wireless networks.

 

This standard was developed using the Gigabit Ethernet communication protocol and provides fast image transfer using readily available Ethernet cables over extended distances. GigE Vision is capable of fast, high-bandwidth transfers of large images in real time at 125 MB/s and up to 100 meters in length. With the use of standard Cat5e and Cat6 cables and connectors, using GigE Vision is cost effective, highly scalable and allows for simple integration by using existing Ethernet infrastructures.

 

Managed by the AIA, a trade association for the machine vision industry, the GigE Vision standard was introduced in 2006 and has since been adopted globally, with most major industrial video hardware and software vendors having developed products that are GigE Vision-compliant. By following the same standard, products from different vendors are all interoperable. This means frame grabbers, embedded hardware interfaces, cameras, video servers, video receivers control applications and management entities can all work together seamlessly using a common Ethernet platform.

 

Much like USB3 Vision, GigE Vision relies on GenICam, a generic programming interface for different types of cameras, to access and control features in cameras and other imaging devices that are compliant. The simplicity of installation and high performance specs of GigE Vision makes it ideal for industrial applications. The standard is also used in telecom, military, data communications and machine vision applications.

 

GigE Vision is currently at version 2.0, which includes non-streaming device control, faster streaming over 10 Gig Ethernet and link aggregation. Version 2.0 is ideal for multi-camera systems and introduced the Precision Time Protocol (PTP) that enables cameras to be activated at the same time and Trigger-over-Ethernet without the need for an I/O cable. It also allows for multi-camera systems to be precisely synchronized, compressed images to be transmitted and enhanced support for multi-tap sensors. With all of its capabilities and benefits, GigE Vision has proven to be a boon in the world of vision applications.

 

White Paper: Wireless Antenna Mounting

March 15, 2018 at 8:00 AM

 

The key to any wireless network is the wireless antenna. It is the hub to which all other parts rely. When determining the right antenna for your application, you must first consider the best location for your antenna, then you have to figure out how to mount that antenna. Our white paper takes an in-depth look at different antenna mounting options for directional and Omni-directional antennas.  

 

Here are some of the common installation options covered for antennas and access points:

 

NEMA Enclosure Mounting:

  •       -   Typical configurations run a pigtail cable from the access point or radio to a bulkhead N-female adapter or coax lightning protector, then attach the antenna directly to the adapter or lightning protector
  •       -   Antennas can also be mounted remotely

 

Pole Mounting:

      -  Using rugged, clamp-style mounting brackets included with most of L-com’s Omni-directional antennas

      -  Upper and lower articulated clamp mounts used with sector-style antennas

      -  Yagi and patch-style antennas use tilt and swivel clamp mounting systems

 

Side of Building Mounting:

      -  HGX-UMOUNT can be used to mount antennas to the side, roof parapet or under the roof eaves of a building.

 

Mobile Mounting:

      -  Several options are available for mobile mounting, including magnetic mounts, NMO bulkhead-style mounts and using a CA-AM1RSPA010 mobile mounting cable

 

Window Mounting:

      -  Suction cups can be used for window mounting

 

Outdoor Access Point Mounting:

      -  Pole mounting or wall mounting are typically utilized for access points

      -  A NEMA enclosure might be needed to protect the access point, surge protectors etc.

 

Click here to read our Wireless Antenna and Access Point Mounting white paper.

 

All our free white papers are available from our website by clicking here.

 

Wireless Infrastructure 101

November 23, 2017 at 8:00 AM

 

You would be hard pressed to find a business, industry or home that doesn’t use wireless communication in some way. We depend on wireless networks used by our mobile devices, laptops, tablets and gaming systems to keep us connected, entertained and informed every day. Here, we’ll look at indoor and outdoor wireless infrastructure design considerations.

 

Frequencies

 

For wireless communication to work, radio frequency (RF) and microwaves are used to transmit voice, video and data. Radio frequencies are usually used in wireless networks, they range from 3 kHz to 300 GHz and are also used for AM broadcasting, navigational beacons and shortwave radio. Microwaves range from 300 MHz to 300 GHz and are typically used for television, FM broadcasting, aviation communications, and radar and satellite links. Most home, business and government networks operate on the Industrial, Scientific and Medical (ISM) frequency bands that range from 900 MHz to 5 GHz. The ISM band frequencies incorporate many of the IEEE 802.11wireless standards.

 


Design Considerations

 

When designing a wireless network, you must always take into consideration the environmental variables in the installation area that will or could affect network performance.

 


Indoor RF Wireless Networks

 

During installation or expansion, indoor networks present a special set of factors to consider. Most wireless access points and routers have a typical range capability specified by the manufacturer. But these ranges are based on having clear line of sight, which requires an unobstructed view of the antenna from the remote point in the link. Unfortunately, this is not the case in most indoor installations, there is usually some type of obstacle present. For example, signals typically will not penetrate concrete walls and the other building materials such as metal studs, aluminum siding, foil-backed insulation, pipes, electrical wiring and furniture. All of these common obstacles can reduce signal range and affect the coverage area. Plus, other wireless equipment such as cordless phones, microwave ovens, radio transmitters and electrical equipment can cause interference and decrease the signal range.

 


Outdoor RF Wireless Networks

 

Outdoor wireless networks face many of the same challenges as indoor networks, such as reflections and multipath. Having a clear line of sight is also critical for an outdoor network, trees and leaves can obstruct 802.11 frequencies and block the signal completely. A site survey is recommended before an outdoor wireless network is deployed, it might also be necessary to clear obstacles.

 

To help you plan and design your wireless network, we offer a series of wireless calculators to get you started.

Wired and Wireless Networks for the Energy Industry

September 14, 2017 at 8:00 AM

 

The energy industry is getting a lot of attention these days with more people talking about how we can better harness and use energy. Here, we’ll look at the energy industry and how all sectors, including oil, gas and renewable sources, are using wired and wireless networks to connect their operations.

 

Oil and Gas

 

Offshore oil platforms are exposed to water, salt, vibration and extreme temperatures. Although in many cases the communications equipment used on these rigs are housed in protective enclosures some equipment must be located in exposed areas where they are subject to environmental extremes. This includes IP cameras used for surveillance of the platform, plus the cabling and converters that link back to the central control room on the rig. Wireless sensors and controllers are also located throughout the platform and are linked by outdoor antennas, amplifiers and access points used to operate the rig.

 

In petroleum refineries, wired and wireless sensors are used to monitor and control process applications and provide real-time data that can warn of system issues. Many valves and controllers are linked to a serial or IP network, as well as security and surveillance equipment that are critical to operations.

 

Natural gas pipelines depend on communications networks to monitor the safety and efficiency of the pipeline, which can span hundreds of miles over harsh terrain and in remote areas. These networks allow for real-time data to be sent to the control room that can detect leaks and issues with pressure and temperature. IP based surveillance systems along the pipeline also require network connectivity to provide added protection.

 

Renewable Energy

 

Solar energy networks use wired and wireless connectivity for long distance control and monitoring of solar panel arrays. For example, serial data cables connect to the power meters on the panel, theses power meters are then connected to the Ethernet network via a device server and antennas wirelessly connect the power meters back to the control center for monitoring and control.

 

Hydroelectric power has modernized operations by implementing automated systems in hydroelectric plants. Many of these systems use Programmable Logic Controllers (PLCs) to control valves, motor starters, sensors and flood gate control systems that are critical to operations. Other systems use wireless networks to monitor and control the plant. Surveillance and security systems are also important in these plants to not only monitor for intruders, but also to visually analyze the dam and plant and watch for structural breakdown.

 

Monitoring wind turbines also requires wired and wireless networks. An industrial Ethernet switch allows signals to be sent to the turbine that change its speed and angle. Fiber optic cables connect the control center to multiple turbines over long distances for complete control of the wind farm and antennas are used to connect the local control center to a main control network.  

 

For more details on how wired and wireless technology is powering the energy industry, and how L-com’s products are being used, download our energy industry overview.

 

© L-com, Inc. All Rights Reserved. L-com, Inc., 50 High Street, West Mill, Third Floor, Suite 30, North Andover, MA 01845