Readers’ Choice -Top Blog Posts of 2017

December 21, 2017 at 8:00 AM

 

As we wrap up another year, we’d like to take a moment to look back on some of our most popular posts. We pride ourselves on providing informative content for our readers by covering a range of wired and wireless technology topics. We sincerely hope that you enjoyed reading our posts as much as we enjoyed writing them and in case you missed anything, here’s a highlight reel of the most popular posts of 2017.

 

 1.       Cable Showdown: Cat6 vs. Cat6a

 

It’s a Cat eat Cat world out there and Cat6 and Cat6a are two of the most popular standards for Ethernet cables. So, how do you decide between the two? One may work better than the other, depending on your application. To help you pick a winner, we compared them side-by-side for a showdown of category proportions. To see how each Cat fared, read the post.

 

 

2.       White-Space Wi-Fi 802.11af

 

Waste not, want not, seems to be a growing way of life for many people these days, and that theme will soon apply to the Wi-Fi spectrum as well. The IEEE standard 802.11af, also known as white-space Wi-Fi or White-Fi, will utilize the unused space in the TV spectrum, the TV white-space, to support Wi-Fi networks. Read the post to find out how it all works.

 

 

3.       OM5 – The Next Generation of Multimode Fiber

 

OM5 was chosen to be the new standard for cabling containing wideband multimode fiber in the 3rd edition of the ISO/IEC 11801 standard. The acceptance of this standard is a milestone for the fiber cabling performance category because it extends the benefits of this revolutionary multimode fiber within connected buildings and data centers worldwide. To find what you need to know about OM5, click here.

 

 

4.       802.11ax – The Next Big Thing

 

The IEEE will be adding to its 802.11 series of standards again with the launch of 802.11ax. 802.11ax is under development and will pick-up where 802.11ac left off by taking MIMO to the next level with MIMO-OFDM. This next big upgrade to Wi-Fi networks might not make its debut for a couple of years, but here’s a look at what’s coming.

 

 

5.       75 Ohm vs. 50 Ohm – Coaxial Comparison

 

Ohm may sound like something you’d say while meditating, but when it comes to coaxial cables, it is actually a unit of resistance. Ohms measure the impedance within the cable. Impedance is resistance to the flow of electrical current through a circuit. To see how 75 Ohm and 50 Ohm compare, read our post.

 

 

White-Space Wi-Fi 802.11af

May 11, 2017 at 8:00 AM

 

Waste not, want not, seems to be a growing way of life for many people these days, and that theme will soon apply to the Wi-Fi spectrum as well. The IEEE standard 802.11af, also known as white-space Wi-Fi or White-Fi, will utilize the unused space in the TV spectrum, the TV white-space, to support Wi-Fi networks.

 

How is this possible?

 

Broadcast television coverage is organized to leave a certain amount of space between coverage areas to avoid interference. This results in a significant amount of space where channels are unused. 802.11af allows Wi-Fi applications that require less power to utilize the white-space between coverage areas without causing interference.

 

Why do we need White Space Wi-Fi?

 

The need for more spectrum is greater than ever. 802.11af fulfills this need by allowing wireless networks to take advantage of the white-space in the frequency spectrum. 802.11af provides support for operation in unused TV channels in the VHF and UHF bands, which adds white-space services to 802.11 WLAN devices and builds upon the 802.11ac offerings.

 

What are the benefits?

 

In addition to providing more spectrum for Wi-Fi use, 802.11af allows for long-range and low-power operation because it uses frequencies below 1 GHz. This means it will work more like a traditional Wi-Fi network to increase bandwidth over a long-range wireless local-area network (WLAN).

 

The lowest band used by current Wi-Fi systems is 2.4 GHz. 802.11af operates in the 6, 7 and 8 MHz channels, which makes it backward compatible with existing international TV band allocations.

 

Operation can be arranged for 1-4 channels, either contiguously or in two non-contiguous blocks, allowing devices to collect enough spectrum to achieve high data rates. Plus, there is a possibility that additional unused frequencies can be accessed to add even more capabilities.

 

Here is a chart showing the 802.11af frequencies and corresponding TV white-space channels:

 

 

 

White-space Wi-Fi 802.11af is not going to be the perfect solution for all applications. But it is going take processing technology to another level by providing access to more spectrum to meet today’s ever-growing Wi-Fi needs.

 

© L-com, Inc. All Rights Reserved. L-com, Inc., 50 High Street, West Mill, Third Floor, Suite 30, North Andover, MA 01845