DisplayPort 2.0 - Just the Facts

August 22, 2019 at 8:00 AM

 

HDMI might be the most popular connection standard for TVs and monitors, but DisplayPort comes in a close second place. This high quality alternative is similar to HDMI in many ways including smaller connectors, digital video, audio/video on one cable, high definition video, 3D capabilities, etc. It has most of the same features of HDMI, plus some capabilities that are important for the high-graphic demands of business applications. And now, DisplayPort is getting an upgrade to DisplayPort 2.0! Let’s look at the facts.

 

DisplayPort 2.0 is slated to launch next year with products incorporating the technology hitting the market in late 2020. This new iteration takes the connection standard into the next generation with triple the bandwidth compared to DisplayPort 1.4a. DisplayPort 2.0 will deliver faster refresh rates and be able to single stream higher resolution formats like 10K and 16K at 60Hz at up to 30 bits per pixel with HDR. For smaller formats, it will also be capable of multiple displays at higher resolutions including two 8K at 120 Hz with 30 bpp and HDR, or two 4K displays at 144 Hz at 24 bpp with no compression.

 

In addition to bandwidth and high-resolution upgrades, DisplayPort 2.0 has some other improvements including Panel Replay which reduces power requirements while enhancing how a display is refreshed. Display Stream Compression (DSC) will be standard and allows for extremely high refresh rates and high-resolution. Plus, a multi-stream transport feature will make for easier daisy chain displays.

 

When it comes to the connectors, DisplayPort 2.0 will be backwards compatible with previous versions. It can be used in “DP Alt Mode” using specific USB-C connectors, allowing for one cable to provide high-speed video & data with optimal performance. The physical interface layer of Thunderbolt 3 is also utilized in this new standard, which will be especially appealing with a merger between Thunderbolt 3 & USB 4 in the works.

 

When it comes to connectivity, HDMI might be the most widely recognized medium, but DisplayPort 2.0 is coming in hot with lots of features that make it a very attractive option. And luckily, L-com has a full line of DisplayPort cables for all of your needs.

 

12G-SDI Serial Digital Interface

April 18, 2019 at 8:00 AM

 

Serial Digital Interface (SDI) is a digital video interface that provides a range of advantages for transmitting video and audio. This long-lived standard has been around nearly 30 years and is still as relevant as ever, keeping up with the changing demands of today’s technology. Now, SDI has come out with its most powerful iteration: 12G-SDI. Let’s take a look at all of the details.

 

12G-SDI brings the SDI standard to the next level with improved resolution, frame rate and color over a single cable. Capable of 12 Gbps speeds, it delivers four times the bandwidth of HD and is perfectly suited for the 4K 60p format. This makes it ideal for live broadcasting, studio sets and venues where it’s important for a cable to maintain a strong signal while also being easy to connect and fairly lightweight. 12G-SDI is also expected to expand into fiber to increase its distance and bandwidth capabilities up to 10km and open up opportunities for 12G technology throughout broadcast and production facilities.

 

Though this standard has been under development since 2012, it has not yet been ratified by the governing body of standards, the Society of Motion Picture and Television Engineers (SMPTE). Thus, not all manufacturers have begun making products to support 12G-SDI. But those that are being made are delivering customers with cables and connectors that are simple to connect with better image and signal, and without extra weight or cost. Even without ratification, 12G-SDI is a viable standard offering real solutions for today’s video and audio demands.

 

Tips for Buying Coaxial Cable

August 14, 2013 at 10:00 AM

 

What’s right for your application?

 

Selecting the proper coaxial cable can go a long way toward satisfying the needs of a specific application. Which criteria are most important to the specifying process? There are 4 key points to be considered when choosing coaxial cables:

 

      RG174/U Bulk Coaxial Cable - Flexible Small Diameter 50 Ohm Cable

 

 

 

 

 

 

1. Cable Type

 

There are basically two types of coaxial cables: those with an impedance of 75 Ohms (Ω), used mostly for video applications, and those with an impedance of 50 Ω, used mostly for data and wireless communications.

 

Typical 75 Ω cables are our RG59/U and RG6/U. These cable types are available in 100-, 500- and 1000-foot reels.

 

Typical RG-style 50 Ω cables for data are RG174/U, RG188/U and RG316/U. These bulk cables can be used in applications where cable assemblies must be built in the field. Available in 100-, 500- and 1000-foot rolls, their stranded 26 AWG center conductors result in very flexible cables for tight-fit applications. Additionally, the bulk RG188A/U cable has a Teflon-taped outer jacket to help achieve a 200-degree C operating temperature, and the RG316/U has an extruded FEP outer jacket that helps achieve a 200-degree C operating temperature.

 

50 Ω cables are also available in the low-loss version: 100-, 200-, and 400-series specifically for wireless applications. Low Loss coaxial cables provide far better shielding than their RG style counterparts and are best suited for RF applications.

 

 

2. Operating Frequency

 

Another important consideration is the operating frequency of the signal carried on the cable. As the frequency increases, the signal energy moves away from the cable's center conductor to the cable's shield outside of the conductor, a phenomenon known as the "skin effect".

 

This has a direct correlation to how far the signal can travel over a cable of a certain length, for a given signal frequency and power level. The higher the signal frequency, the shorter the distance traveled.

 

For our full Coaxial Cabling Tutorial, click here.

 

 

3. Cable Attenuation

 

Cable attenuation is the amount of signal loss over a specific distance. In general, the higher the frequency, the larger the attenuation will be. The larger the diameter of a cable's center conductor, the lower the attenuation is.

 

For example, an RG59/U cable with a 14 AWG center conductor can carry a signal (at a specific frequency and power level) about twice the distance as that of an RG11/U cable with a 20 AWG center conductor. It's imperative to know how much cable attenuation is acceptable in your particular application when selecting coaxial cable.

 

 

4. Characteristic Impedance

 

A coaxial cables characteristic impedance is an important parameter that affects the performance of the signal being carried over the cable. Also known as transmission impedance, it is defined as the relationship between a cable's capacitance per unit length to its inductance per unit length. For optimum signal transfer, the cable's characteristic impedance should be matched to the impedance/resistance of the load.

 

RG59A/U Bulk Coaxial Cable - Stranded Center Conductor 75 Ohm Cable
50 Ohm BNC Crimp Plug for RG58 - Amphenol #31-320-RFX
See a Matrix of Data
and Wireless Coax Cable Assemblies for Easy Ordering
Looking for bulk 75Ω cable for audio/video? See it here!
Get Coax Connectors
from L-com and build your own cable assemblies!
 
Quick note: RG-style coaxial cables are not all built the same. Check the specification requirements before you buy, and if you need help contact our technical support.
 

How to Install Wireless Amplifiers

July 10, 2013 at 10:00 AM

 Setting up a WiFi Booster for an Indoor Wireless System

 

An Assortment of WiFi Amplifiers

If you do not work with wireless components every day, the prospect of adding a new component to boost the power of your signal may seem daunting. While we always recommend you have a professional install communications equipment to ensure it is done correctly, this brief tutorial will give you the basic steps to set up a simple WiFi booster. If it helps, you can also take a look at the video in this post or visit our complete tutorial here.

 

 

 

If you have a WLAN setup that requires a stronger signal, a simple WiFi booster may do the trick. Due to FCC regulations, if you are doing this installation in the United States, you need FCC approval to buy the amplifier. If you don't need an amplifier with power over 1 Watt, you can purchase an FCC certified amplifier kit which requires no special operator's license. Either way, most setups follow this simple procedure.

 

Diagram of an RF amplifier setup

On the amplifier, you will typically see two coaxial cable jacks, one labeled "Antenna" and the other labeled "Radio". There should also be a power jack (usually a DC jack requiring an external power adapter), which is where the amplifier gets the power to repeat the signal.

 

Using low-loss coaxial cable, simply connect the antenna to the antenna jack on the amplifier, and the radio (or access point or router, etc) to the radio jack. Then, after the two sides are hooked up, attach the power adapter and plug it in. Most amplifiers have LED lights to indicate activity, which helps you to see if it is working.

 

It's that easy!

 

Quick note: L-com has a huge selection of top-quality wireless RF amplifiers for the 2.4 GHz WiFi band and 5.8 GHz WiFi band, as well as 900 MHz, 3.5 GHz, and 4.9 GHz frequencies. These ampifiers feature HyperLink's® Active Power Control (APC), which automatically maintains a constant output power regardless of the length of the attached cables. Aside from the indoor wireless amplifiers, L-com also carries HyperLink® brand outdoor wireless amplifiers for all-weather operation.
 

Tutorial on Coaxial Cabling

July 3, 2013 at 10:00 AM

 

 

 

Coax is one of the most venerable cabling standards having been developed for the US military over 50 years ago. Unlike some standards that were popular for a while and eventually became legacy, coaxial cabling is still very relevant and used in a lot of common applications. It is a robust and reliable cable type with no sign of going away any time soon.

 

 

 Types of Coax Cabling

 

As you can imagine, over the years that coax has been around, many variations have been designed for specific applications. We will talk about the Radio Guide (RG) styles and the low-loss styles that were made popular by Times Microwave's LMR® standard. Though there are many other coax options like mini coax, twinaxial and tri-axial, the applications for those have dwindled in recent years.

 

 

RG-style Coaxial Cable

 

The original Radio Guide standard called for a number followed by codes to determine specific aspects of the cable (such as jacket type, center conductor material, etc.). However, today many of the standards have become "soft" meaning that RG58B/U, for instance, may have very different characteristics from manufacturer to manufacturer.

 

Exposed view of a coaxial cable

Most RG numbers refer to cables made with specific diameters (as thicker diameters typically have lower attenuation over long lengths), shielding, jacket type, and dielectric type. The dielectric is important as it can control the "characteristic impedance" of the cable. In general, cables with a characteristic impedance of 50 Ohms are used in data and wireless network applications, and cables with a characteristic impedance of 75 Ohms are used in higher bandwidth audio/video applications.

 

The bottom line about RG-style coax cable: if you need to get a specific type for your application, you should include the characteristics of the cable with your request. The actual standard may have some variations that would make the off-the-shelf product unsuitable for some circumstances.

 

 

Low-loss Coaxial Cable

 

Low-loss cable is almost exclusively used in wireless applications. It is ideal for any antenna-to-radio setup, and is often used extensively in wireless system installations. Low loss cable is often referred to by its series number, such as 200-Series cable, which is usually a rough approximation of the diameter of the cable. The higher the number (ie, 400, 800, etc), the thicker and heavier the cable, and the less attenuation over the length. Because of this, higher series numbers are typically used in cases where the antenna is permanently installed at some distance from the radio. Lower series numbers are used in cases where the antenna is closer, especially in portable setups where the weight of the cable is important.

 

 

Connectors

 

There are a large variety of coaxial connectors, usually designated by a letter or combination of letters. Most coaxial connectors are round or hex shaped, and can come in screw-on, push-on, or twist-lock designs. Be extra careful if you need a connector that is called "reverse polarized" or preceded with the letters "RP". These connectors are similar to the regular polarity versions except that the gender of the connector is reversed, making it unable to mate unless it is with another RP style connector. For a complete list of coaxial connectors with large images, try this coaxial connector chart.

 
If you are in need of coax: L-com has carried RG style coax cable and assemblies for decades, and together with our vast collection of low-loss coax cables it is one of the most comprehensive in the industry.
 
© L-com, Inc. All Rights Reserved. L-com, Inc., 50 High Street, West Mill, Third Floor, Suite 30, North Andover, MA 01845