How the IoT is Affecting Wi-Fi

October 18, 2018 at 8:00 AM

 

In today’s society, Wi-Fi has become something that people now expect to be readily available and depend on to carry out everyday tasks. With the rollout of the Internet of Things (IoT), people will soon become accustomed to having all of their things connected as well. But with all of those connected devices, can Wi-Fi handle an even greater influx of user demand for high-speed connectivity? Here, we’ll take a look at how the IoT is affecting Wi-Fi.

 

When it comes to connectivity requirements, each IoT application can have a different set of range, data throughput and energy efficiency needs. Some IoT devices only need small, intermittent data transfers, such as utility meters. While some need a constant stream of data, such as live surveillance cameras. Also, range can differentiate from very short for wearables, to spanning miles for weather and agricultural sensor applications. But there are two things that are constants for all IoT applications: the need for remote power and constant connectivity.

 

To fulfill this need, Wi-Fi is the obvious choice because Wi-Fi coverage is so widespread, but standard Wi-Fi is not always the best choice for IoT applications. Thus, there are several standards that have emerged from the need for IoT connectivity. These include LoRaWAN, multiple short range communications standards and new Wi-Fi standards such as HaLow (802.11ah) and HEW (802.11ax).

 

The 802.11ah standard was introduced to address the range and power needs of the IoT. It utilizes the 900 MHz frequency band to provide extended range, covering a one kilometer radius, lower power requirements, wake/sleep periods and station grouping options.

 

The 802.11ax standard also includes the wake/sleep and station grouping features, and has a MU-MIMO feature that allows up to 18 users to simultaneously send data within a 40 MHz channel when paired with the smaller subcarrier spacing. Internet service providers and technology startups have also begun developing an application layer that includes mesh networks that use sets of routers to work together and extend wireless coverage, and provisioning tactics that define how wireless devices connect to networks.

 

There is some fear that the IoT could essentially break Wi-Fi, but there seems to be plenty of development activity focused around finding solutions to Wi-Fi congestion before it becomes a problem. With all of the IoT devices expected to be connecting in the near future, there will likely be a significant shift in Wi-Fi practices and standards, but as with everything in the world of technology, being able to pivot and reconfigure is the name of the game.

 

Short Range Communications: A to Z

July 12, 2018 at 8:00 AM

 

These days, there is more wireless technology in use than ever before. From phones to toys to industrial automation, wireless devices are being used in all sectors, and for good reason. Wireless technology is portable, easy to install, flexible and eliminates the cost of expensive wiring. With the boom of wireless devices, there has also been a surge of wireless protocols and standards to support all of that technology. These include several short range wireless communication technologies that transmit shorter distances than other long range technologies but still pack a punch, which makes them great for certain applications. Here, we’ll take a look at the long list of short range communication standards and technologies to see how they stack up.

 

ANT+

 

ANT and ANT+ are sensor network technologies used for collecting and transferring sensor data and are maintained by the ANT+ Alliance Special Interest Group. This protocol is a type of personal-area network (PAN) that features remarkably low power consumption and long battery life. It divides the 2.4 GHz band into 1 MHz channels and accommodates multiple sensors. ANT+ is primarily used for short-range, low-data-rate sensor applications such as sports monitors, wearables, wellness products, home health monitoring, vehicle tire pressure sensing and in household items that can be controlled remotely such as TVs, lights and appliances.

 


Bluetooth

 

This popular technology is managed by the Bluetooth Special Interest Group (SIG) and is covered by the IEEE 802.15.1 standard. Originally created as an alternative to cabled RS-232, Bluetooth is now used to send data from PANs and fixed and mobile devices. This plug-and-play technology utilizes the 2.4 -2.485 GHz band and has a standard range of 10 meters, but it can extend to 100 meters at maximum power with a clear path. Bluetooth Low Energy has a simpler design and is a direct competitor of ANT+, focusing on health and medical applications.

 

 

 EnOcean

 

This system is self-powered and able to wirelessly transmit data by using ultra-low power consumption and energy collecting technology. Instead of a power supply, EnOcean’s wireless sensor technology collects energy from the air.  Energy from the environment, such as light, pressure, kinetic motion and temperature differences, is harvested and used to transmit a signal up to 30 meters indoors using a very small amount of energy. In the US, EnOcean runs on the 315 MHz and 902 MHz bands. In Europe, it uses the 868 MHz frequency band and in Japan, it operates on the 315 MHz and 928 MHz frequency bands.

 

 

  FirstNet

 

The FirstNet organization is an independent government authority dedicated to providing specialized communication services for first responders. The FirstNet network is the first high-speed, nationwide, wireless broadband network dedicated to public safety. With this network, all emergency workers are able to use one interoperable LTE network devoted solely to keeping them connected. FirstNet uses the 700 MHz spectrum available nationwide and aims to solve interoperability challenges and ensure uninterrupted communication to enhance the safety of communities and first responders.

 

NFC


Near-Field Communications (NFC) is an ultra-short-range technology created for contactless communication between devices. It is often used for secure payment applications, fast passes and similar applications. Operating on the 13.56 MHz ISM frequency, NFC has a maximum range of around 20 cm, which provides a more secure connection that is usually encrypted. Many smart phones already include an NFC tag.

 

 

RFID


Radio-frequency identification (RFID) uses small, flat, cheap tags that can be attached to anything and used for identification, location, tracking and inventory management. When a reader unit is nearby, it transmits a high-power RF signal to the tags and reads the data stored in their memory. Low frequency RFID uses the 125-134 kHz band, high frequency RFID uses the 13.56 MHz ISM band and Ultra-high frequency RFID uses the 125-134 kHz band. With multiple ISO/IEC standards available for RFID, this technology has replaced bar codes in some industries.

 

 

ZigBee


ZigBee is the standard of the ZigBee Alliance. The path of a message in this network zig-zags like a bee, hence the name. It is a software protocol that uses the 802.15.4 transceiver as a base and is meant to be cheaper and simpler than other wireless personal area networks (WPANs), like Wi-Fi or Bluetooth. ZigBee is able to build large mesh networks for sensor monitoring, handling up to 65,000 nodes, and it can also support multiple types of radio networks such as point-to-point and point-to-multi-point. It has a data rate of 250 kB/s and can transfer wireless data over a distance of up to 100m. ZigBee can be used for a range of applications including remote patient monitoring, wireless lighting and electrical meters, traffic management systems, consumer TV and factory automation, to name a few.

 

 

Where short range communication lacks in distance, it more than makes up for in versatility and capability, and as we can see there are plenty of options available to support all of your short range application requirements.

 

© L-com, Inc. All Rights Reserved. L-com, Inc., 50 High Street, West Mill, Third Floor, Suite 30, MA 01845