Smart Homes - The Future is Here

September 20, 2018 at 10:00 AM

 

Long ago, the idea of a home having the technology to be interactive was only a possibility in a Hollywood production or sci-fi novel. But those days are gone, the future is here and smart homes have moved from the realm of fantasy to an endless world of possibility. With the development of the Internet of Things (IoT), the world in general is becoming smarter and safer, and that includes our homes. Here, we’ll take a look at the technology behind the innovation bringing technological magic to your home.

 

First, what is a smart home? A smart home is automated, much in the way your coffee pot or your air conditioner are automated to turn on at a certain time or temperature. But a smart home takes that one step further by connecting all of those automated devices in your home through a wireless network, they are then able to be monitoring and programmed from one device. It is that communication with the devices that makes it smart. The devices in a smart home all rely on connectors and sensors to transmit and relay signals. Most wireless home automation uses low-power equipment so that power supply is not an issue.

 

To connect all of these devices, a combination of long and short-range wireless communication protocols is used, such as Wi-Fi, Bluetooth, ANT and ZigBee. With this technology, along with smartphones and tablets, we are now able to connect a multitude of devices within the home, this includes TVs, heating and cooling systems, lighting, appliances, security systems and cameras, or anything else that can be connected to the network. Plus, the communication to these devices is not distance limited, meaning you can control or change your thermostat while you’re at work or traveling using WAN connectivity via a router. Many new homes are being constructed with this technology built-in, older homes can be retrofitted with smart technologies and there are devices from companies like Google and Amazon that will connect to many electronics within your home.

 

Why would someone want a smart home? For one, it can make life a lot easier. Being able to control the devices within your home from your smartphone is super convenient. There is also an additional level of safety added when you’re able to monitor your home through a connected security network. Video cameras can provide surveillance in and around the home, with smart locks you can allow repairmen into your home and you are able to monitor when children get home from school. For people with disabilities or limited movement, smart homes that allow them to manage the home environment from a single, mobile device can make life much easier. In addition to safety, smart homes can be very energy efficient, which is good for the environment. Being able to control the thermostat remotely and turn lights and appliances on or off can be a great way to save energy.

 

With the growth of the IoT and more things becoming connected, it is no wonder that this would apply to our homes as well. Not only do smart homes provide convenience, they can also be good for the environment and give assistance to the disabled. Lucky for us, we no longer have to wait for the home of the future, the future is now. 

 

IoT: Making the World Safer

June 21, 2018 at 8:00 AM

 

We are living in exciting times. With the development of the IoT making it possible to connect devices and make smart homes, smart businesses, smart cars and smart cities, our world is evolving into an interconnected network designed to make life easier. In previous posts, we’ve explored the IoT and antennas, the Industrial IoT (IIoT) and how the IIoT is changing manufacturing. Aside from the business aspect of the IoT, is there a greater benefit to society? Here, we’ll look at how the IoT, and all of its things, can also be used to make the world safer.

 

Today, body cameras are offering a previously unseen view into the world of policing and social media allows for crimes to be publicly documented by anyone with a smartphone. Plus, cameras and surveillance systems are already being implemented in many cities to keep a watchful eye when law enforcement isn’t physically present. Take that a step further and there are technologies being introduced that are truly transformative. Intelligent roadway systems are being utilized to direct traffic flow and manage digital signs that provide information to drivers, all to help avoid accidents and make the roads safer. This same type of technology, along with GPS, can also allow first responders to better navigate through traffic and improve response times.

 

Furthermore, with the IoT, there is a huge amount of data being collected. All of this information can be used to analyze behavior and patterns and create algorithms to identify potential crimes before they occur. Everything from past criminal activity, behavior patterns, weather patterns, social media activity and gunshot sensors can be used to inform law enforcement and help prevent crimes from taking place, or lessen the effect of the event. In fact, some cities already have technology in place that uses sensors to detect a gunshot, determine the location of shots fired and deliver that information to law enforcement within one minute. Much like a fire alarm alerts of potential danger, this system alerts of a potential active shooter situation, notifies the police and provides real-time data on where shots were fired and the layout of the location.

 

Other technology making the world safer includes self-driving cars, which remove some element of human error and could eliminate the risk that goes along with high-speed chases. Also, drones can be used to provide aerial surveillance, assess and access areas that might be too dangerous for officers or first responders to enter blindly. GPS can be used to track where someone is in a building, making it easier to find people in the event of a fire, natural disaster or other emergency situation. Plus, health monitoring devices can provide information to first responders if a victim is unresponsive. These devices might even be able to detect a health issue before it occurs.

 

There are many ways that the IoT is changing the world for the better, including safety. By using IoT technology and connecting devices to allow people to navigate this world more safely, we all win.

 

LoRaWAN and the IoT

April 5, 2018 at 8:00 AM

 

As the Internet of Things (IoT) continues to grow, new technology to foster its growth also emerges. One example is LoRaWAN.

 

LoRaWAN was developed by the LoRa Alliance as a way to standardize the global deployment of low-power, wide-area networks (LPWAN) to enable the IoT. LoRaWAN is a LPWAN specification designed for wireless, battery operated devices in a regional, national or global network. The focus of LoRaWAN is fulfilling key requirements of the IoT with secure, bi-directional communication, mobility and localization services.

 

LoRaWAN is a media access control (MAC) payer protocol made for large-scale public networks with a single operator. This specification allows for interoperability between smart Things without complicated local installations, which offers more freedom for users, developers and businesses, and enables easier implementation of the IoT. The low power wide-area networks used in the LoRaWAN specification are able to provide low data rate, low cost, long battery life and long range – all of which is ideal for IoT devices. Plus, the simple star network architecture means there are no repeaters and no mesh routing complexity.

 

How does it work? LoRaWAN is a star network and the way it operates is somewhat simple. The gateway communicates messages between the end-devices, and vice versa, through single-hop wireless communication. There is also a network server in the background that is connected to the gateway via a standard IP connection. With this standard, end-point communication is usually bi-directional, though LoRaWAN also supports mass distribution messages to decrease on air communication time. Communication between gateways and end-devices is distributed between different data rates and frequency channels, which helps to avoid interference. Data rates with LoRaWAN range from 0.3 kbps to 50 kbps. The LoRaWAN server manages the data rate and RF output for each device with an adaptive data rate scheme, this maximizes battery life of the end-devices and network capacity. LoRaWAN also provides extra security with several layers of encryption, which is necessary for nation-wide networks designed for IoT use. These layers of protection consist of a unique network key (EUI64) for a secure network, a unique application key (EUI64) for end-to-end security on an application level and a device specific key (EUI128).

 

There are three different classes of LoRaWAN end-point devices:

 

  • ·       Class A - Bi-directional end-devices: This class of end-devices are capable of bi-directional communications, this means the after the uplink transmission of each device there are two short downlink receive windows. These end-devices follow an ALOHA-type protocol where the transmission scheduled is mostly based on the communication needs of the end-device, with some times chosen randomly. The Class A operations system provides the lowest power option for applications that only need downlink communication from the server after an uplink transmission has been sent by the end-device.

 

  • ·       Class B – Bi-directional end-devices with scheduled receive slots: Class B devices unlock additional receive windows at scheduled times, in addition to random receive windows like Class A. To open the receive window at a scheduled time, the end-device receives a time synchronized beacon from the gateway which alerts the server of when the end-device is listening.

 

  • ·       Class C – Bi-directional end-devices with maximal receive slots: Class C end-devices have receive windows that are almost always open, only closing when a transmission is in progress.

 

As IoT use increases, LoRaWAN provides a low data rate, low cost option making it easier to connect Things locally or globally, all while providing long battery life and long range.

 

The Full Spectrum of Wireless Communications Protocols and Standards

March 1, 2018 at 8:00 AM

 

The IoT is the driving force behind most wireless technology today. Everything including cars, smart homes, businesses and cities will be connected by the IoT. Plus, an estimated 300 million smartphones are slated to have artificial neural network (ANN) learning capabilities that would enable functions such as navigation, speech recognition and augmented reality.

 

With all the wireless technology rolling out and market demand for wireless communications applications continuing to grow, the development of different wireless technologies is also exploding to meet that demand. In fact, there are so many new technologies emerging that some directly compete with one another and frequencies overlap.

 

Many protocols are in accordance with IEEE 802.11 standards. The IEEE 802 LAN/MAN Standards Committee (LMSC) develops the most widely known wired and wireless standards, which encompasses local and metropolitan area networks. The fundamental IEEE standard of 802.11.n had of a minimum of 31 amendments through 2016, with more in the process. These cover everything from Ethernet, wireless LAN, virtual LAN, wireless hot spots, bridging and more.

 

Other IEEE standards include:

 

-    IEEE 802.15.4 for Simplified Personal Wireless and Industrial Short-Range Links

-    IEEE 802.15 Wireless PAN

-    IEEE 802.16 Broadband Wireless (WiMAX)

-    IEEE 802.22 for Wireless Regional Area Network (WRAN), with base station range to 60 miles

-    IEEE 802.23 for Emergency Service Communications

 

802.11 wireless technology began when the FCC released the industrial, scientific and medical (ISM) radio bands for unlicensed use. The ISM bands were then established in 1974 by the International telecommunication Union (ITU).

 

These are the frequency allocations as determined by the ITU:

 

Min. Freq.

Max. Freq

Type

Availability

Licensed Users

6.765 MHz

6.795 MHz

A

Local Acceptance

Fixed & Mobile Service

13.553 MHz

13.567 MHz

B

Worldwide

Fixed & Mobile Service except Aeronautical

26.957 MHz

27.283 MHz

B

Worldwide

Fixed & Mobile Service except Aeronautical & CB

40.66 MHz

40.7 MHz

B

Worldwide

Fixed, Mobile & Earth Exploration/Satellite Service

433.05 MHz

434.79 MHz

A

Europe

Amateur & Radiolocation Service

902 MHz

928 MHz B

B

Americas

Fixed, Mobile & Radiolocation Service

2.4 GHz

2.5 GHz

B

Worldwide

Fixed, Mobile, Radiolocation, Amateur & Amateur Satellite Service

5.725 GHz

5.875 GHz

B

Worldwide

Fixed-Satellite, Radiolocation, Mobile, Amateur & Amateur Satellite Service

24 GHz

24.25 GHz

B

Worldwide

Amateur, Amateur Satellite, Radiolocation & Earth Exploration Satellite

61 GHz

61.5 GHz

A

Local Acceptance

Fixed, Inter-satellite, Mobile & Radiolocation

122 GHz

123 GHz

A

Local Acceptance

Earth Exploration Satellite, Inter-Satellite, Space Research

244 GHz

246 GHz

A

Local Acceptance

Radiolocation, Radio Astronomy, Amateur & Satellite Service

 

In addition to IEEE standards, other technologies have broken away from IEEE and made the move to special trade organizations and even changed their names. Plus, there is a slew of short range communications standards vying for dominance, including ANT+, Bluetooth, FirstNet and ZigBee. No matter what your wireless communication application is, rest assured that there are plenty of standards and protocols to refer to when designing your wireless network.

 

The IIoT and Manufacturing

February 22, 2018 at 8:00 AM

 

The Internet of Things (IoT) is revolutionizing many industries, including manufacturing. With the introduction of the Industrial IoT (IIoT) and all of its benefits, manufacturing is being transformed by value-add opportunities and smart technology. In fact, manufacturing, transportation and utility industries are forecast to make the largest IIoT investments. However, there is a lot of work that goes into IIoT implementation. Here, we’ll take an in-depth look at how the IIoT is changing manufacturing.

 

Traditionally, manufacturing companies focused on large operations that required a large capital layout with the goal of consistency and repeatability. Organizations adopting IIoT technology must not only dedicate capital to technological improvements, but also change the way they do business. Return on investment is driven by connected operations, smart preventative maintenance and predictive analytics. As IIoT implementation accelerates the speed of business, companies must increase the speed of their internal processes to keep up the pace. Introduction of the IIoT has also shifted customer expectations. Customers expect companies to be nimble and adaptive, and so the manufacturing processes must evolve to meet those expectations.

 

With all of the changes that come along with the IIoT, completing a successful rollout is a challenging task. Security is an issue to consider, if your systems are breached, production can come to a halt. Another challenge is the slow adoption of standards and interoperability. It can be expensive to upgrade your equipment. Also, many manufacturers prefer to use their own proprietary technologies, which may not meet IoT standards. Correctly interpreting the analytics to create the best outcome is a challenge, it takes time to understand how to best integrate the IIoT as a part of the manufacturing process and into your specific business model. Resistance to change also can slow the adoption of the IIoT and its overall success in the industry. For smaller operations, implementing the IIoT and everything that goes along with it, may seem like an insurmountable task. Thus, many of the companies leading the way are large, complex, industrial operations that can absorb large projects, such as an IIoT rollout. 

 

The IIoT offers an array of benefits to the manufacturing industry, but integration of this revolutionary technology is a process that doesn’t happen overnight.

 

© L-com, Inc. All Rights Reserved. L-com, Inc., 50 High Street, West Mill, Third Floor, Suite 30, MA 01845