411 on IoT Sensors

October 17, 2019 at 8:00 AM

 

In this blog, we’ve talked about a lot of different aspects and parts of the Internet of Things (IoT) - from industrial IoT to antennas & IoT, and how the IoT is making the world safer, we’ve covered a lot of ground. Now, we’re going to take a look at IoT sensors. Along with all the “things” connected through the IoT, sensors can be enabled to collect information about the surrounding environment. Here is the info you need to know. 

 

IoT sensors capture data and deliver it to be stored and processed in the core network. They are offered in various sizes to best fit the application and can be designed to be discreet stand-alone products or integrate into another product. These sensors can be installed close to the point of use or at the edge of the network. Sometimes they are localized within a space, such as a building. Other times, they are a further distance away, like in a field. No matter the location, sensors in harsh environments must always be protected to maintain reliability and durability. The actual application will determine where the sensors are placed, as well as what type of sensor is used, how it sends back data and what data is collected.

 

Sensors are offered in mechanical, electrical, electromechanical, magnetic, electromagnetic, chemical or optical models. The type of data they collect is just as varied and which one you use depends on what your application requires. Data types include, but are not limited to: pressure, moisture, temperature, vibration, motion, chemicals, sound and speed. For precision data, the sensor will need higher accuracy. Geospatial tagging is required to collect data on location. And data that is time sensitive or mission critical might call for time tagging capabilities.

 

How often sensors capture data and when it gets sent back to the core network can also be adjusted depending on the application. Data can be collected as needed, during certain events, at predetermined intervals or continuously. That data can then be transmitted back (over a cable or wirelessly) as soon as it’s captured or only at specific times.

 

IoT sensors can be powered by an electric wire, solar power or batteries. The location of the sensors, how many are deployed and the amount of power used will largely determine the best power type for the application. It wouldn’t be feasible to change hundreds of batteries for sensors in a remote location. Just keep in mind that the more often the sensors send data, and the larger the files, the more power they’ll use.

 

There are a lot of variables to consider when choosing the right IoT sensor for your application, and now you should be well-versed in what to keep in mind.

 

Embedded Antennas and the IoT

May 2, 2019 at 8:00 AM

 

In the not so distant future, the world will be fully automated with machines being able to communicate with little or no interaction from humans, thanks to the arrival of the Internet of Things (IoT) and the use of embedded antennas.

 

These small form factor antennas are a perfect fit for the shrinking size of IoT devices, while still being able to keep up with the massive amounts of data that will need to be transmitted as the IoT connects physical devices with software based management and control applications.

 

Embedded antennas are small, yet powerful antennas with many offering multiband support for use in mobile and fixed data applications. Their key performance attributes include high efficiency, low power consumption, low return loss and isolation.

 

High efficiency brings better signal reception, improving the system’s ability for faster data transfer rates. Reduced power consumption allows for increased longevity. Less return loss means more power transmitted, and isolation limits the amount of crosstalk interference. Embedded antennas can work with high-frequency or low-frequency systems, some feature MIMO technology and smart antennas have been introduced that feature embedded GPS and Flash memory capabilities.

 

As IoT deployments get underway, there are more embedded antenna options to consider to take full advantage of this exciting era of automation.

 

To help you succeed with your IoT implementations, we offer a full line off-the-shelf, embedded antennas ready to ship the same-day, plus custom designed antennas to suite all of your IoT needs.

 

411 on 5G

November 1, 2018 at 8:00 AM

 

For the past few years, the world of technology has been abuzz with talk about the 5th generation mobile wireless (5G), and with full-scale rollouts set to begin next year, all that buzz can be expected to become a swarm. For example, when wireless networks transitioned from 3G to 4G, there were incremental improvements in technology and performance, but the upgrade from 4G to 5G is expected to be a complete revolution of wireless and connectivity. To make sure you’re prepared to take part in the revolution, here’s the 411 to get you up to speed on 5G.

 

The goal of the 5G network is to create a platform that makes it possible to deliver global connection. This means being able to connect everyone and everything, everywhere around the globe. In addition to that, 5G systems are slated to deliver data rates that far surpass 4G in a wider coverage area, while being more power efficient and reliable, presenting lower latency, supporting faster moving equipment and the influx of communication stemming from the Internet of Things (IoT). Plus, 5G will not only support mobile wireless users, it will also include enhanced wireless connectivity technology for use in applications such as automotive, smart homes, augmented and virtual reality.

 

In order to cross into all of those markets, the specifications for 5G performance have been debated and defined. The finalized specifications were set to be released by the International Telecommunications Union (ITU) and the 3rd Generation Partnership Project (3GPP) in 2020. Though mobile operators and service providers are urging the standardization organizations to accelerate that timetable.

 

With so much uncertainty still looming over the finalization of the standard, early releases are not shaping up exactly as planned. In the meantime, the non-standalone 5G new radio (NSA 5G NR) is the interim 5G specification and will help ease the transition from 4G to 5G. The NSA 5G NR supports many aspects of 5G including the sub-6 GHz spectrum, frequency bands, carrier aggregation and MIMO. With the new 5G frequency bands, NSA 5G NR is capable of 5G-like performance while utilizing existing technologies and infrastructure. This interim specification will provide the groundwork for future trials and deployments and allow for the technology to be better understood for the full 5G rollout.

 

With the excitement of early 5G availability, there have also been new application opportunities emerging that include fixed wireless (FWS) to the home. This development would use 5G wireless technology to provide last mile data services including television, home internet and voice-over-IP (VoIP) phone calling. As the launch of early 5G gets closer, there are bound to be additional new and existing applications to arise that would benefit from 5G’s lower latency, increased data rates and enhanced reliability. Until then, we will have to wait with great anticipation for the arrival of 5G.

 

Posted in: Wireless

Tags: , , , , ,

How the IoT is Affecting Wi-Fi

October 18, 2018 at 8:00 AM

 

In today’s society, Wi-Fi has become something that people now expect to be readily available and depend on to carry out everyday tasks. With the rollout of the Internet of Things (IoT), people will soon become accustomed to having all of their things connected as well. But with all of those connected devices, can Wi-Fi handle an even greater influx of user demand for high-speed connectivity? Here, we’ll take a look at how the IoT is affecting Wi-Fi.

 

When it comes to connectivity requirements, each IoT application can have a different set of range, data throughput and energy efficiency needs. Some IoT devices only need small, intermittent data transfers, such as utility meters. While some need a constant stream of data, such as live surveillance cameras. Also, range can differentiate from very short for wearables, to spanning miles for weather and agricultural sensor applications. But there are two things that are constants for all IoT applications: the need for remote power and constant connectivity.

 

To fulfill this need, Wi-Fi is the obvious choice because Wi-Fi coverage is so widespread, but standard Wi-Fi is not always the best choice for IoT applications. Thus, there are several standards that have emerged from the need for IoT connectivity. These include LoRaWAN, multiple short range communications standards and new Wi-Fi standards such as HaLow (802.11ah) and HEW (802.11ax).

 

The 802.11ah standard was introduced to address the range and power needs of the IoT. It utilizes the 900 MHz frequency band to provide extended range, covering a one kilometer radius, lower power requirements, wake/sleep periods and station grouping options.

 

The 802.11ax standard also includes the wake/sleep and station grouping features, and has a MU-MIMO feature that allows up to 18 users to simultaneously send data within a 40 MHz channel when paired with the smaller subcarrier spacing. Internet service providers and technology startups have also begun developing an application layer that includes mesh networks that use sets of routers to work together and extend wireless coverage, and provisioning tactics that define how wireless devices connect to networks.

 

There is some fear that the IoT could essentially break Wi-Fi, but there seems to be plenty of development activity focused around finding solutions to Wi-Fi congestion before it becomes a problem. With all of the IoT devices expected to be connecting in the near future, there will likely be a significant shift in Wi-Fi practices and standards, but as with everything in the world of technology, being able to pivot and reconfigure is the name of the game.

 

Smart Homes - The Future is Here

September 20, 2018 at 10:00 AM

 

Long ago, the idea of a home having the technology to be interactive was only a possibility in a Hollywood production or sci-fi novel. But those days are gone, the future is here and smart homes have moved from the realm of fantasy to an endless world of possibility. With the development of the Internet of Things (IoT), the world in general is becoming smarter and safer, and that includes our homes. Here, we’ll take a look at the technology behind the innovation bringing technological magic to your home.

 

First, what is a smart home? A smart home is automated, much in the way your coffee pot or your air conditioner are automated to turn on at a certain time or temperature. But a smart home takes that one step further by connecting all of those automated devices in your home through a wireless network, they are then able to be monitoring and programmed from one device. It is that communication with the devices that makes it smart. The devices in a smart home all rely on connectors and sensors to transmit and relay signals. Most wireless home automation uses low-power equipment so that power supply is not an issue.

 

To connect all of these devices, a combination of long and short-range wireless communication protocols is used, such as Wi-Fi, Bluetooth, ANT and ZigBee. With this technology, along with smartphones and tablets, we are now able to connect a multitude of devices within the home, this includes TVs, heating and cooling systems, lighting, appliances, security systems and cameras, or anything else that can be connected to the network. Plus, the communication to these devices is not distance limited, meaning you can control or change your thermostat while you’re at work or traveling using WAN connectivity via a router. Many new homes are being constructed with this technology built-in, older homes can be retrofitted with smart technologies and there are devices from companies like Google and Amazon that will connect to many electronics within your home.

 

Why would someone want a smart home? For one, it can make life a lot easier. Being able to control the devices within your home from your smartphone is super convenient. There is also an additional level of safety added when you’re able to monitor your home through a connected security network. Video cameras can provide surveillance in and around the home, with smart locks you can allow repairmen into your home and you are able to monitor when children get home from school. For people with disabilities or limited movement, smart homes that allow them to manage the home environment from a single, mobile device can make life much easier. In addition to safety, smart homes can be very energy efficient, which is good for the environment. Being able to control the thermostat remotely and turn lights and appliances on or off can be a great way to save energy.

 

With the growth of the IoT and more things becoming connected, it is no wonder that this would apply to our homes as well. Not only do smart homes provide convenience, they can also be good for the environment and give assistance to the disabled. Lucky for us, we no longer have to wait for the home of the future, the future is now. 

 

© L-com, Inc. All Rights Reserved. L-com, Inc., 50 High Street, West Mill, Third Floor, Suite 30, North Andover, MA 01845