5 things you need to know about MU-MIMO

October 3, 2019 at 8:00 AM

 

When you’ve got multiple devices using the same network, multi-user MIMO (MU-MIMO) is the way to go. MU-MIMO enables numerous Wi-Fi devices to receive multiple data streams at the same time. This is exceptionally more efficient than the single-user MIMO used by many routers. Here, we’ll take a look at the top 5 things you need to know about MU-MIMO.

 

1.      One-Way or Two-Way

 

Whether MU-MIMO is one-way or two-way depends on the Wi-Fi standard being used. MU-MIMO utilizes the 80211ac standard, which works solely with downlink wireless connections. Simultaneously sending data to multiple users is something that only wireless routers and APs are able to do. When the individual wireless devices are sending data to that router or AP, they have to take turns or separately use SU-MIMO to send multiple streams when it’s their turn. That said, multiple wireless devices will be able to receive data and be able to utilize simultaneous streams for sending data when 802.11ax Wave 2 comes into play.

 

2.      OFDMA Takes It Up a Notch

 

Orthogonal Frequency-Division Multiple Access (OFDMA) technology is part of 802.11ax and separates the channels into smaller segments so multiple devices can communicate at the same time. This technology compliments the capabilities of MU-MIMO. It organizes how the channels are used by allowing each device their own channel so they can coordinate when to talk more easily. While it is similar to MU-MIMO, OFDMA offers a different set of capabilities as it can be used in high density environments with low throughput or small-packet applications like IoT sensors.

 

3.      802.11ax (aka Wi-Fi 6) = Concurrent MU-MIMO Streams

 

The introduction of 802.11ax into the mix increases the number of users in a MU-MIMO group from four to eight. The ability to have more devices connected at the same time can improve throughput and make connections faster.

 

4.      2.4 GHz & 5 GHz are both Options

 

802.11n and 802.11ac limited MU-MIMO to the 5 GHz bandwidth, but with 802.11ax, MU-MIMO will now be able to use both the 2.4 & 5 GHz bands. While 2.4 GHz can only handle a maximum of three, small, legacy channels at one time, this improvement could allow faster speeds in the often overcrowded 2.4 GHz band.

 

5.      Benefits of Beamforming

 

MU-MIMO takes advantage of another feature of 802.11ac and 802.11ax, beamforming. This keeps signals from dispersing randomly in different directions by pointing it to the intended wireless devices. This, in turn, improves Wi-Fi speeds and ranges by using the signal more proficiently.

 

There you have it, five more reasons why MU-MIMO can be a game changer for your wireless network. To read more about MU-MIMO, check out more of our blog posts.

 

Gearing up for Wi-Fi 6

September 19, 2019 at 8:00 AM

 

I don’t know about you, but we are definitely looking forward to the debut of Wi-Fi 6 later this year. This next generation Wi-Fi standard improves on the current 802.11ac standard with more than just faster speeds. So let’s take a closer look at what’s in store.

 

First, Wi-Fi 6, also known as 802.11 ax, is backwards compatible with its predecessor, 802.11ac (now deemed Wi-Fi 5). Wi-Fi 6 was created to help support the increasing number of devices in today’s homes and businesses. If you have a lot of devices connected, several smart home devices or if you’re using virtual reality devices, a Wi-Fi 6 router might be a great fit.

 

So how fast is it? Wi-Fi 6 is capable of streaming up to 9.6 Gbps and has delivered transfer speeds of 1,320 Mbps in some tests. That is around 30%-40% faster than 802.11 ac, and for US customers, it will be 1,000% times faster than the current average download speed of 119 Mbps.

 

How is this possible? Wi-Fi 6 utilizes 1024-QAM to deliver more data and more efficiency, along with a wider 160 MHz channel for faster speeds. This new standard also takes advantage of 8x8 uplink/downlink, MU-MIMO, OFDMA and BSS Color for a capacity that is up to 4 times larger and able to handle more devices.

 

As with any Wi-Fi standard, much of the speed capability will depend on the speed being delivered by your internet service provider (ISP). In order to take full advantage of Wi-Fi 6 speeds, you’ll need a plan with your ISP that is capable of delivering high speeds, as your plan acts much like a speed limit on how fast your internet connection can go. Plus, you’ll need both a Wi-Fi 6 router and Wi-Fi 6 capable devices to benefit from Wi-Fi 6 speeds. So hold on tight, because Wi-Fi 6 capable routers and devices are already rolling out and are sure to become standard in next generation wireless devices.

 

802.11ad - What is WiGig?

November 15, 2018 at 8:00 AM

 

As the evolution of wireless technology continues, so does the development of new wireless standards. Next on the list is 802.11ad – also known as WiGig. Most of the emerging wireless standards have been a steady progression, but this one has some fundamental changes planned. Here, we’ll explore what WiGig is all about.

 

As far as speed is considered, WiGig will support data rates up to 7 Gbps, though real data rates might be less than this maximum limit. WiGig operates on the 60 GHz frequency, as opposed to Wi-Fi which uses the 2.4 to 5 GHz bands. This should result in much less congestion compared to Wi-Fi’s congested frequencies and WiGig also shouldn’t have as many interference issues as there are on the 2.4 GHz Wi-Fi band. Plus, it utilizes a narrow signal beam to reduce attenuation. But with a range of only around 30 feet and the 60 GHz signal unable to penetrate obstacles, WiGig is limited to one room with a clear line of sight from the transmitter to the receiver.

 

Instead of MIMO, WiGig uses multiple antennas for beamforming, which helps reduce attenuation. WiGig beamforming utilizes a phased antenna array that provides a signal power boost in whichever direction it is aimed. One of these access points can have as many as 64 antennas to generate up to 128 beams.

 

For multiple access, Service Period (SP), a new channel access mode, has been added to WiGig. This creates transmission schedules that are assigned to clients by access points. Time on the channel is organized into intervals called Beacon Intervals (BI). SP access is projected to be the preferred channel access in WiGig.

 

WiGig will also introduce a new mode of operation called PBSS. With PBSS, there is a central coordinator, like an access point (AP), but it allows clients to communicate while surpassing the AP. Clients can also talk to one another directly with this. PBSS is designed for applications that stream HD video to a display, because it doesn’t require the video to be sent through the AP, but it can still connect through the AP in other areas of the network.

 

In addition to 2.4 and 5 GHz, future Wi-Fi devices are expected to include 60 GHz radios and are expected to be capable of seamless transfers between the bands. Not only is WiGig bringing something new to today’s wireless networks, but it will add extra capability to future applications.

 

How the IoT is Affecting Wi-Fi

October 18, 2018 at 8:00 AM

 

In today’s society, Wi-Fi has become something that people now expect to be readily available and depend on to carry out everyday tasks. With the rollout of the Internet of Things (IoT), people will soon become accustomed to having all of their things connected as well. But with all of those connected devices, can Wi-Fi handle an even greater influx of user demand for high-speed connectivity? Here, we’ll take a look at how the IoT is affecting Wi-Fi.

 

When it comes to connectivity requirements, each IoT application can have a different set of range, data throughput and energy efficiency needs. Some IoT devices only need small, intermittent data transfers, such as utility meters. While some need a constant stream of data, such as live surveillance cameras. Also, range can differentiate from very short for wearables, to spanning miles for weather and agricultural sensor applications. But there are two things that are constants for all IoT applications: the need for remote power and constant connectivity.

 

To fulfill this need, Wi-Fi is the obvious choice because Wi-Fi coverage is so widespread, but standard Wi-Fi is not always the best choice for IoT applications. Thus, there are several standards that have emerged from the need for IoT connectivity. These include LoRaWAN, multiple short range communications standards and new Wi-Fi standards such as HaLow (802.11ah) and HEW (802.11ax).

 

The 802.11ah standard was introduced to address the range and power needs of the IoT. It utilizes the 900 MHz frequency band to provide extended range, covering a one kilometer radius, lower power requirements, wake/sleep periods and station grouping options.

 

The 802.11ax standard also includes the wake/sleep and station grouping features, and has a MU-MIMO feature that allows up to 18 users to simultaneously send data within a 40 MHz channel when paired with the smaller subcarrier spacing. Internet service providers and technology startups have also begun developing an application layer that includes mesh networks that use sets of routers to work together and extend wireless coverage, and provisioning tactics that define how wireless devices connect to networks.

 

There is some fear that the IoT could essentially break Wi-Fi, but there seems to be plenty of development activity focused around finding solutions to Wi-Fi congestion before it becomes a problem. With all of the IoT devices expected to be connecting in the near future, there will likely be a significant shift in Wi-Fi practices and standards, but as with everything in the world of technology, being able to pivot and reconfigure is the name of the game.

 

Readers’ Choice -Top Blog Posts of 2017

December 21, 2017 at 8:00 AM

 

As we wrap up another year, we’d like to take a moment to look back on some of our most popular posts. We pride ourselves on providing informative content for our readers by covering a range of wired and wireless technology topics. We sincerely hope that you enjoyed reading our posts as much as we enjoyed writing them and in case you missed anything, here’s a highlight reel of the most popular posts of 2017.

 

 1.       Cable Showdown: Cat6 vs. Cat6a

 

It’s a Cat eat Cat world out there and Cat6 and Cat6a are two of the most popular standards for Ethernet cables. So, how do you decide between the two? One may work better than the other, depending on your application. To help you pick a winner, we compared them side-by-side for a showdown of category proportions. To see how each Cat fared, read the post.

 

 

2.       White-Space Wi-Fi 802.11af

 

Waste not, want not, seems to be a growing way of life for many people these days, and that theme will soon apply to the Wi-Fi spectrum as well. The IEEE standard 802.11af, also known as white-space Wi-Fi or White-Fi, will utilize the unused space in the TV spectrum, the TV white-space, to support Wi-Fi networks. Read the post to find out how it all works.

 

 

3.       OM5 – The Next Generation of Multimode Fiber

 

OM5 was chosen to be the new standard for cabling containing wideband multimode fiber in the 3rd edition of the ISO/IEC 11801 standard. The acceptance of this standard is a milestone for the fiber cabling performance category because it extends the benefits of this revolutionary multimode fiber within connected buildings and data centers worldwide. To find what you need to know about OM5, click here.

 

 

4.       802.11ax – The Next Big Thing

 

The IEEE will be adding to its 802.11 series of standards again with the launch of 802.11ax. 802.11ax is under development and will pick-up where 802.11ac left off by taking MIMO to the next level with MIMO-OFDM. This next big upgrade to Wi-Fi networks might not make its debut for a couple of years, but here’s a look at what’s coming.

 

 

5.       75 Ohm vs. 50 Ohm – Coaxial Comparison

 

Ohm may sound like something you’d say while meditating, but when it comes to coaxial cables, it is actually a unit of resistance. Ohms measure the impedance within the cable. Impedance is resistance to the flow of electrical current through a circuit. To see how 75 Ohm and 50 Ohm compare, read our post.

 

 

© L-com, Inc. All Rights Reserved. L-com, Inc., 50 High Street, West Mill, Third Floor, Suite 30, North Andover, MA 01845