White-Space Wi-Fi 802.11af

May 11, 2017 at 8:00 AM

 

Waste not, want not, seems to be a growing way of life for many people these days, and that theme will soon apply to the Wi-Fi spectrum as well. The IEEE standard 802.11af, also known as white-space Wi-Fi or White-Fi, will utilize the unused space in the TV spectrum, the TV white-space, to support Wi-Fi networks.

 

How is this possible?

 

Broadcast television coverage is organized to leave a certain amount of space between coverage areas to avoid interference. This results in a significant amount of space where channels are unused. 802.11af allows Wi-Fi applications that require less power to utilize the white-space between coverage areas without causing interference.

 

Why do we need White Space Wi-Fi?

 

The need for more spectrum is greater than ever. 802.11af fulfills this need by allowing wireless networks to take advantage of the white-space in the frequency spectrum. 802.11af provides support for operation in unused TV channels in the VHF and UHF bands, which adds white-space services to 802.11 WLAN devices and builds upon the 802.11ac offerings.

 

What are the benefits?

 

In addition to providing more spectrum for Wi-Fi use, 802.11af allows for long-range and low-power operation because it uses frequencies below 1 GHz. This means it will work more like a traditional Wi-Fi network to increase bandwidth over a long-range wireless local-area network (WLAN).

 

The lowest band used by current Wi-Fi systems is 2.4 GHz. 802.11af operates in the 6, 7 and 8 MHz channels, which makes it backward compatible with existing international TV band allocations.

 

Operation can be arranged for 1-4 channels, either contiguously or in two non-contiguous blocks, allowing devices to collect enough spectrum to achieve high data rates. Plus, there is a possibility that additional unused frequencies can be accessed to add even more capabilities.

 

Here is a chart showing the 802.11af frequencies and corresponding TV white-space channels:

 

 

 

White-space Wi-Fi 802.11af is not going to be the perfect solution for all applications. But it is going take processing technology to another level by providing access to more spectrum to meet today’s ever-growing Wi-Fi needs.

 

Up In Flames: Cable Flammability Ratings

May 4, 2017 at 8:00 AM

 

Fires can’t always be prevented, but with a plan in place, fires are more easily contained and people can be kept safer. The same principle applies when choosing cables for your communication network. Some cable materials can pose real threats when ignited, especially if the fire is in an enclosed space where evacuation is not an option. For this reason, cable flammability ratings were developed. Here, we’ll take a look at what these ratings mean and how to use them to keep yourself safe and keep your communications equipment from going up in flames.

 

Most commercially available cable assemblies have an outer jacket made from polyvinyl chloride (PVC). PVC is durable and flexible, making it a great option for many applications. But for all of its benefits, PVC has some serious shortcomings. In a fire, PVC cables can act as a flame accelerant and emit dangerous, toxic gases. Fortunately, there are cable jacket materials on the market that are less-flammable and much safer. These are especially good options for installations in enclosed spaces such as ships, aircraft, submarines, trains and other vehicles.

 

General Purpose (CM, CMG, CMx)

These cables comply with UL-1582. They will burn but they partially self-extinguish. These are often used for workstation cables and patch cords, but are not for use between building floors or in air plenum spaces.

 

 

Riser-rated (CMR)

Riser-rated cables are UL-1666 compliant and are designated for use in vertical tray applications such as cable runs between floors, through cable risers or in elevator shafts. In order for a cable to be Riser-rated, it must be able to self-extinguish.

 

 

 

Plenum-rated (CMP)

Plenum-rated cables comply with NFPA-262 and UL-910. They are the only cables permitted in spaces identified as air plenums, such as raised flooring systems and air handling ducts. Cables designated as plenum-rated are able to self-extinguish and will not re-ignite.

 

 

Low-Smoke Zero-Halogen (LSZH)

 

As the name states, these cables produce low-smoke and zero halogen, plus they are self-extinguishing. Because they significantly reduce the amount of smoke and eliminate harmful halogen from being emitted, they are used in enclosed spaces where smoke and fumes can injure people and equipment. For more information on LSZH cables and where they are used, check out this blog post.

 

 

 To see exactly how each of these cables burn, watch our cable flammability test videos.

 

Case Study – On-Ramp Wireless

April 27, 2017 at 8:00 AM

 

Imagine a wireless network with more reach, capacity and scalability than any other wireless network, including cellular. That network exists and it is called the On-Ramp Total Reach Network. On-Ramp created the first wireless network built from the ground up to power wide-area machine-to-machine communication. This network uses patented technology to achieve unprecedented reach, capacity and scalability.

 

On-Ramp’s innovative technology operates in unlicensed bands and utilizes weak signals, even if they are in high-noise environments or over long distances with immunity to high-interference. This process produces groundbreaking performance with drastically less infrastructure cost, making On-Ramp wireless an ideal solution for many applications including utility, energy, agriculture, tracking and other M2M applications.

 

The issue On-Ramp had was finding a partner that offered end-to end wireless networking products to meet all of their needs. They needed a complete wireless networking solution that was made to withstand the rigors of field use with minimal lead time while being competitively priced.

 

L-com was the perfect partner, able to meet the needs of On-Ramp’s Total Reach Network with a wide range of products that included coaxial adapters, surge protectors, 2.4 GHz Wi-Fi antennas and low-loss cable assemblies. With the help of L-com’s products, On-Ramp able to supply its customers with an innovative networking solution with unmatched performance, lower TCO and greater ROI.

 

To read the full details of this case study, click here.

 

 

IP Ratings for Dummy’s

April 20, 2017 at 8:00 AM

 

Don’t know an IP rating from an IP address? Don’t worry, we’re here to help. First, IP ratings have absolutely nothing to do with IP addresses. In this case, IP stands for ingress protection. Ingress protection (IP) ratings are used to measure a product’s level of protection against liquids and solids - qualities that can be very important for expensive communications equipment, especially when exposed to harsh environments.

 

An IP rating consists of two digits, each with its own meaning. The first number in the rating represents protection from solid objects and particulates such as dust and sand. These numbers range from 0 to 6. A rating of 0 means there is no protection and a 6 means the product is 100% protected.

 

The second digit in the rating signifies how well the part is protected from liquids. These numbers range from 0 to 8 with levels of protection varying from no protection to fully protected even when completely submerged and under pressure.

 

A variety of IP-rated communication system components are available to support a wide range of applications where standard products will not work.  These include IP67 and IP68 cable assemblies, couplers and adapters. Waterproof varieties also include USB, Ethernet, video and fiber optic products designed for unforgiving industrial environments.

 

Here is an example and a chart to illustrate exactly how IP ratings work:

  

 

 

To view all of our IP-rated products for use in extreme conditions, click here.

 

HaLow Wi-Fi for the IoT

April 13, 2017 at 8:00 AM

 


The Internet of Things (IoT) might have found a saving grace for keeping all of those “things” connected. HaLow Wi-Fi, pronounced like halo (hay-low), is coming to scene with a list of virtues p

erfect for smart homes, smart cars, smart cities, and even healthcare, industrial, retail and agriculture.

 

Generally, we’re used to Wi-Fi aiming to achieve lightning fast speeds with the ability to move large amounts of data.  But with IoT devices, there’s no need for super-speeds and the amount of data being transmitted is typically small.  The real need of the IoT is for devices to remain connected wherever they are without dwindling power supplies or depending on cellular data. 

 

HaLow Wi-Fi is slated to offer double the coverage range of traditional Wi-Fi while lowering power consumption. This would not only set it apart from other Wi-Fi standards, but also make it ideal for many IoT applications. Thus, the Wi-Fi Alliance is hoping HaLow will replace cellular networks in smart cities and Bluetooth radios in wearable devices.

 

HaLow is an extension of the IEEE 802.11ah standard and uses the 900 MHz bandwidth instead of the 2.4 GHz or 5 GHz bands. The 900 MHz band is a low-frequency workhorse usually reserved for microwaves ovens and baby monitors. By using this robust frequency for Wi-Fi, the signal is able to reach further and penetrate objects and obstacles without dwindling the device’s power supply – many of which run solely on batteries.

 

Reported data rates for Halow are between 150 kilobits and 18 megabits per second. This is significantly less than traditional Wi-Fi rates, but speed is not the focus in this case. For the IoT,  power consumption, reliability and distance are the priority. The HaLow standard will be official next year and might be exactly the  divine intervention needed for the IoT.

 

Posted in: Wireless

Tags: , , , , ,

© L-com, Inc. All Rights Reserved. L-com, Inc., 50 High Street, West Mill, Third Floor, Suite 30, North Andover, MA 01845