DisplayPort Connectivity Primer: What You Need To Know

October 20, 2013 at 8:45 AM

 

You may wonder why there’s a need for DisplayPort when HDMI® is as ubiquitous as it is, and with all of its capabilities above traditional analog video.

 

Well, DisplayPort is similar to HDMI® in a lot of ways: smaller connectors, digital video, audio/video on one cable, high definition video, 3D capabilities, etc. For most consumers, especially in the home theater market, if they plug it in and get a display on the screen then it works! And little else matters. As you'll see, however, not all audio/video applications are the same.

 

DisplayPort wasn't necessarily developed to improve on HDMI®, so when we compare HDMI® to DisplayPort, we're not saying it should be either/or. Instead, we're saying before you assume all the personnel in your business need HDMI®-only video cards and laptops, consider taking a look at DisplayPort's capabilities.

 Close Up View of DisplayPort Connector

HDMI® vs. DisplayPort

 

 

HDMI® is in many ways the successor to DVI, which was in many ways the bridge between analog video like VGA and digital video. Improving on DVI, HDMI® includes audio with the video in one cable, does away with the screw locks, and can provide up to 1080p HD video which is necessary for most of the latest TVs used in home theater applications. That's really what HDMI® was developed for and it does a great job.

 

DisplayPort was developed by VESA (Video Electronics Standards Association) as a standard for higher resolution computer display devices. It has most of the features of HDMI® plus some capabilities that are important for the high-graphic demands of some business applications.


Among the top benefits of DisplayPort are:

 

1. Unlike HDMI®, which does not support a very good refresh rate at the higher resolutions, DisplayPort maxes out at 3840 x 2160 pixels with a refresh rate of 60Hz, allowing it to handle very demanding video and 3D applications.


2. The DisplayPort standard can support multiple monitors (up to 4) with a single card, each receiving independent audio/video streams. This is important for individuals working on high resolution graphics, but needing more than one screen to handle the different tool bars or multiple applications running at the same time. In some cases, monitors may be "daisy chained" together, simplifying the setup.


3. DisplayPort has some other minor benefits such as longer cable lengths and a latching feature that makes them more secure in vibration applications than HDMI®'s friction fit connectors.Engineering Drawing of a DisplayPort Connector Calling Out Latches

4. Though DisplayPort is nowhere near as common as HDMI® for peripherals, that is changing. For instance, Thunderbolt, the standard developed by Intel based on the DisplayPort standard, is present on nearly all of Apple's MacBooks and other laptops and computers. Manufacturers of peripherals to be used on MacBooks and elsewhere are designing in either Thunderbolt or Mini DisplayPort to comply.

 

HDMI® isn't going away. Nor should it! It works great for the vast majority of applications. However, there are several applications that will benefit from DisplayPort. In time the technology for DisplayPort will probably be as relevant for those applications as HDMI® is for home theater.

 

 

Posted in: Wired

Tags: , ,

How to Extend the Range of Your Wireless Signal

September 4, 2013 at 10:00 AM

 

 

One of the most common questions we are asked is: "How do I extend my WiFi signal?" Whether you need extension for an indoor or outdoor application, here are your options:

 

Use a higher gain antenna: By using a higher gain antenna you can extend your wireless signal range, though one thing to consider when using a higher gain antenna is potential loss of vertical signal coverage. Typically when you increase the gain on an antenna the RF gain pattern becomes more focused and produces a narrower horizontal beam. Read more about this phenomenon of higher gain causing less vertical signal coverage.

 

Add a WiFi amplifier: By adding a WiFi amplifier you can boost your wireless signal. We suggest trying one of our WiFi booster kits that are available for purchase by anyone in the United States without the need for a special FCC license. These kits offer easy set up and strong signal extension and coverage capabilities. Additionally we offer RF amplifiers for export, military and FCC licensed users supporting frequencies ranging from 900 MHz to 5.8 GHz.

 

Upgrade from 802.11b/g to 802.11n: If you are currently using 802.11b or 802.11g access points and wireless adapters, consider upgrading to the latest IEEE standard, 802.11n. 802.11n offers better range and speed than 802.11b and 802.11g standards products.

 

Use a higher power Access Point: A typical WiFi router or Access Point provides about 30mW of transmit power. By upgrading to a higher power access point or router you can boost your wireless signal resulting in extended coverage.

 

As with any wireless installation, Line of Sight and the Fresnel Zone must be considered along with other factors such as multipath interference. These phenomena and your physical environment (obstacles, obstructions etc.) all affect your signal strength and range.

 

WiFi Antennas WiFi Amplifiers WiFi Access Points
WiFi Antennas WiFi Amplifiers WiFi Access Points

 

By using one or a combination of these aforementioned upgrades and additions you can provide greater wireless signal coverage. Good luck!

 

Understanding Copper/Fiber Media Converters

August 28, 2013 at 10:00 AM

What is a Media Converter?

 

Diagram of fiber optic premise wiring converted to copper with media converters

A media converter is used to extend Cat 5e/6 Ethernet cabling to distances beyond the 100 meter maximum for Ethernet by converting IP voice/video/data signals to fiber optic cabling.

 

Where are Media Converters used?

 

Media converters are used in environments where EMI/RFI is present, such as manufacturing facilities and other industrial environments. Other applications include campus networks where many buildings need to be connected via fiber. Also, high-rise buildings typically use a fiber backbone, which is laid vertically and taps into copper (UTP) networks on each floor via a media converter.

 

L-com's Media Converter offering

 

L-com offers media converters designed for both commercial and industrial use.

 

Commercial-grade fiber-to-copper media converters from L-com

 

L-com Ethernet Media Converter 10/100TX to 100FX MM SC 2km

- Plug-and-play installation
- Rugged metal case ensure longevity
- Multimode and Single-mode versions available
- Easy-to-read LEDs provide at-a-glance system status information
- Operating temp: 0°C to +70°C 

 

Industrial DIN Rail Media Converters from L-com

 

LCMC Media Converters

- 35mm DIN rail mounting
- Rugged aluminum case
- 24V DC power input
- Plug and play
- Operating temp: -40°C to +70°C

 

Access Point (AP) Antenna Replacements

August 21, 2013 at 10:00 AM

 

Upgrading the antennas on your WiFi access point: How to determine the correct AP connector

 

Our technical support department often answers questions like: "How do I upgrade my access points' antennas?" or "How do I identify the type of connector on my WiFi access point or router?" There are a few simple steps to adding or replacing the antenna on your wireless product.

 

First you must check to see if the antennas on your access point are removable.

 

                               Front of an EnGenius wireless access point (AP) showing antennas behindBack of an EnGenius wireless access point (AP) showing antennas

Front and back of a WiFi Access Point showing removable rubber duck antennas installed

 

Back of an EnGenius wireless access point (AP) showing antennas removed

Back of a WiFi Access Point showing rubber duck antennas removed.

 

Next you should identify the type of connector the antenna jack is on the access point. One tip is to check with the manufacturer's website or user manual for your specific make and model listing for the antenna connector type. If you cannot find it on the manufacturer's web site, you can compare it with our common RF connector chart shown below.

 

Common RF Coaxial Connectors

 

Also, you may want to upgrade to a higher gain rubber duck antenna on your access point to increase the signal range and strength. View our 2.4 GHz Rubber Duck antenna selection.

 

Or you might want to connect your access point to an outside antenna. In this case you will need to connect a low loss coax pigtail cable to your access point and then to a longer antenna feeder cable to reach the outside antenna as illustrated below.

 

Illustration of low loss coax pigtail used to connect wireless AP to an antenna

Quick tip: If you need a new antenna, try L-com's Antenna Product Wizard to make your search easier. The wizard will walk you through three steps to identify antennas that match your criteria.

Tips for Buying Coaxial Cable

August 14, 2013 at 10:00 AM

 

What’s right for your application?

 

Selecting the proper coaxial cable can go a long way toward satisfying the needs of a specific application. Which criteria are most important to the specifying process? There are 4 key points to be considered when choosing coaxial cables:

 

      RG174/U Bulk Coaxial Cable - Flexible Small Diameter 50 Ohm Cable

 

 

 

 

 

 

1. Cable Type

 

There are basically two types of coaxial cables: those with an impedance of 75 Ohms (Ω), used mostly for video applications, and those with an impedance of 50 Ω, used mostly for data and wireless communications.

 

Typical 75 Ω cables are our RG59/U and RG6/U. These cable types are available in 100-, 500- and 1000-foot reels.

 

Typical RG-style 50 Ω cables for data are RG174/U, RG188/U and RG316/U. These bulk cables can be used in applications where cable assemblies must be built in the field. Available in 100-, 500- and 1000-foot rolls, their stranded 26 AWG center conductors result in very flexible cables for tight-fit applications. Additionally, the bulk RG188A/U cable has a Teflon-taped outer jacket to help achieve a 200-degree C operating temperature, and the RG316/U has an extruded FEP outer jacket that helps achieve a 200-degree C operating temperature.

 

50 Ω cables are also available in the low-loss version: 100-, 200-, and 400-series specifically for wireless applications. Low Loss coaxial cables provide far better shielding than their RG style counterparts and are best suited for RF applications.

 

 

2. Operating Frequency

 

Another important consideration is the operating frequency of the signal carried on the cable. As the frequency increases, the signal energy moves away from the cable's center conductor to the cable's shield outside of the conductor, a phenomenon known as the "skin effect".

 

This has a direct correlation to how far the signal can travel over a cable of a certain length, for a given signal frequency and power level. The higher the signal frequency, the shorter the distance traveled.

 

For our full Coaxial Cabling Tutorial, click here.

 

 

3. Cable Attenuation

 

Cable attenuation is the amount of signal loss over a specific distance. In general, the higher the frequency, the larger the attenuation will be. The larger the diameter of a cable's center conductor, the lower the attenuation is.

 

For example, an RG59/U cable with a 14 AWG center conductor can carry a signal (at a specific frequency and power level) about twice the distance as that of an RG11/U cable with a 20 AWG center conductor. It's imperative to know how much cable attenuation is acceptable in your particular application when selecting coaxial cable.

 

 

4. Characteristic Impedance

 

A coaxial cables characteristic impedance is an important parameter that affects the performance of the signal being carried over the cable. Also known as transmission impedance, it is defined as the relationship between a cable's capacitance per unit length to its inductance per unit length. For optimum signal transfer, the cable's characteristic impedance should be matched to the impedance/resistance of the load.

 

RG59A/U Bulk Coaxial Cable - Stranded Center Conductor 75 Ohm Cable
50 Ohm BNC Crimp Plug for RG58 - Amphenol #31-320-RFX
See a Matrix of Data
and Wireless Coax Cable Assemblies for Easy Ordering
Looking for bulk 75Ω cable for audio/video? See it here!
Get Coax Connectors
from L-com and build your own cable assemblies!
 
Quick note: RG-style coaxial cables are not all built the same. Check the specification requirements before you buy, and if you need help contact our technical support.
 
© L-com, Inc. All Rights Reserved. L-com, Inc., 50 High Street, West Mill, Third Floor, Suite 30, MA 01845