GigE Vision – A Clear Standard

July 19, 2018 at 8:00 AM

 

As big data has gotten bigger and bigger, so have vision applications. GigE Vision is a global interface standard designed to support the transmission of high-speed video and related control data over Ethernet networks that include GigE, 10 GigE and 802.11 wireless networks.

 

This standard was developed using the Gigabit Ethernet communication protocol and provides fast image transfer using readily available Ethernet cables over extended distances. GigE Vision is capable of fast, high-bandwidth transfers of large images in real time at 125 MB/s and up to 100 meters in length. With the use of standard Cat5e and Cat6 cables and connectors, using GigE Vision is cost effective, highly scalable and allows for simple integration by using existing Ethernet infrastructures.

 

Managed by the AIA, a trade association for the machine vision industry, the GigE Vision standard was introduced in 2006 and has since been adopted globally, with most major industrial video hardware and software vendors having developed products that are GigE Vision-compliant. By following the same standard, products from different vendors are all interoperable. This means frame grabbers, embedded hardware interfaces, cameras, video servers, video receivers control applications and management entities can all work together seamlessly using a common Ethernet platform.

 

Much like USB3 Vision, GigE Vision relies on GenICam, a generic programming interface for different types of cameras, to access and control features in cameras and other imaging devices that are compliant. The simplicity of installation and high performance specs of GigE Vision makes it ideal for industrial applications. The standard is also used in telecom, military, data communications and machine vision applications.

 

GigE Vision is currently at version 2.0, which includes non-streaming device control, faster streaming over 10 Gig Ethernet and link aggregation. Version 2.0 is ideal for multi-camera systems and introduced the Precision Time Protocol (PTP) that enables cameras to be activated at the same time and Trigger-over-Ethernet without the need for an I/O cable. It also allows for multi-camera systems to be precisely synchronized, compressed images to be transmitted and enhanced support for multi-tap sensors. With all of its capabilities and benefits, GigE Vision has proven to be a boon in the world of vision applications.

 

Short Range Communications: A to Z

July 12, 2018 at 8:00 AM

 

These days, there is more wireless technology in use than ever before. From phones to toys to industrial automation, wireless devices are being used in all sectors, and for good reason. Wireless technology is portable, easy to install, flexible and eliminates the cost of expensive wiring. With the boom of wireless devices, there has also been a surge of wireless protocols and standards to support all of that technology. These include several short range wireless communication technologies that transmit shorter distances than other long range technologies but still pack a punch, which makes them great for certain applications. Here, we’ll take a look at the long list of short range communication standards and technologies to see how they stack up.

 

ANT+

 

ANT and ANT+ are sensor network technologies used for collecting and transferring sensor data and are maintained by the ANT+ Alliance Special Interest Group. This protocol is a type of personal-area network (PAN) that features remarkably low power consumption and long battery life. It divides the 2.4 GHz band into 1 MHz channels and accommodates multiple sensors. ANT+ is primarily used for short-range, low-data-rate sensor applications such as sports monitors, wearables, wellness products, home health monitoring, vehicle tire pressure sensing and in household items that can be controlled remotely such as TVs, lights and appliances.

 


Bluetooth

 

This popular technology is managed by the Bluetooth Special Interest Group (SIG) and is covered by the IEEE 802.15.1 standard. Originally created as an alternative to cabled RS-232, Bluetooth is now used to send data from PANs and fixed and mobile devices. This plug-and-play technology utilizes the 2.4 -2.485 GHz band and has a standard range of 10 meters, but it can extend to 100 meters at maximum power with a clear path. Bluetooth Low Energy has a simpler design and is a direct competitor of ANT+, focusing on health and medical applications.

 

 

 EnOcean

 

This system is self-powered and able to wirelessly transmit data by using ultra-low power consumption and energy collecting technology. Instead of a power supply, EnOcean’s wireless sensor technology collects energy from the air.  Energy from the environment, such as light, pressure, kinetic motion and temperature differences, is harvested and used to transmit a signal up to 30 meters indoors using a very small amount of energy. In the US, EnOcean runs on the 315 MHz and 902 MHz bands. In Europe, it uses the 868 MHz frequency band and in Japan, it operates on the 315 MHz and 928 MHz frequency bands.

 

 

  FirstNet

 

The FirstNet organization is an independent government authority dedicated to providing specialized communication services for first responders. The FirstNet network is the first high-speed, nationwide, wireless broadband network dedicated to public safety. With this network, all emergency workers are able to use one interoperable LTE network devoted solely to keeping them connected. FirstNet uses the 700 MHz spectrum available nationwide and aims to solve interoperability challenges and ensure uninterrupted communication to enhance the safety of communities and first responders.

 

NFC


Near-Field Communications (NFC) is an ultra-short-range technology created for contactless communication between devices. It is often used for secure payment applications, fast passes and similar applications. Operating on the 13.56 MHz ISM frequency, NFC has a maximum range of around 20 cm, which provides a more secure connection that is usually encrypted. Many smart phones already include an NFC tag.

 

 

RFID


Radio-frequency identification (RFID) uses small, flat, cheap tags that can be attached to anything and used for identification, location, tracking and inventory management. When a reader unit is nearby, it transmits a high-power RF signal to the tags and reads the data stored in their memory. Low frequency RFID uses the 125-134 kHz band, high frequency RFID uses the 13.56 MHz ISM band and Ultra-high frequency RFID uses the 125-134 kHz band. With multiple ISO/IEC standards available for RFID, this technology has replaced bar codes in some industries.

 

 

ZigBee


ZigBee is the standard of the ZigBee Alliance. The path of a message in this network zig-zags like a bee, hence the name. It is a software protocol that uses the 802.15.4 transceiver as a base and is meant to be cheaper and simpler than other wireless personal area networks (WPANs), like Wi-Fi or Bluetooth. ZigBee is able to build large mesh networks for sensor monitoring, handling up to 65,000 nodes, and it can also support multiple types of radio networks such as point-to-point and point-to-multi-point. It has a data rate of 250 kB/s and can transfer wireless data over a distance of up to 100m. ZigBee can be used for a range of applications including remote patient monitoring, wireless lighting and electrical meters, traffic management systems, consumer TV and factory automation, to name a few.

 

 

Where short range communication lacks in distance, it more than makes up for in versatility and capability, and as we can see there are plenty of options available to support all of your short range application requirements.

 

Case Study: Sony Biotechnology

June 28, 2018 at 8:00 AM

 

Sony Biotechnology is an award winning, state-of-the-art medical manufacturing company that has delivered innovative, high-quality product solutions to the global market for 23 years. Their main focus is the flow cytometry market, designing and building equipment that sorts human and animal cells.

 

One of Sony Biotechnology’s new products needed a high-quality, shielded Ethernet cable that could meet Sony’s design requirements. The cable needed to have stranded conductors, color coded conductors, a tinned copper braided shield that could be soldered to and a low-smoke zero-halogen jacket to meet environmental and safety standards. This design-specific cable also had to meet project deadline and cost constraints.

 

Sony purchased cable from another manufacturer, but they ran into several issues that made the cable unusable. For example, during testing, the cable would not hold the solder to attach to the grounding wire. Plus, the individual conductors were not color coded, which made termination very challenging and time consuming. After asking for the supplier’s cable specs, it was also discovered the cable’s braided shield had been made with aluminum instead of tinned copper.

 

Since this manufacturer’s cable failed Sony’s testing and requirements, Sony consulted with L-com’s product management team to find a solution. Our product team was able to provide them with an off-the-shelf solution that met all of Sony’s needs, the TRD855DSZ-7 Ethernet cable. This double-shielded, 26 AWG cable with a LSZH jacket not only met all of Sony’s requirements, but it was available immediately and met Sony’s price target.

 

 

To read the entire case study click here.

 

IoT: Making the World Safer

June 21, 2018 at 8:00 AM

 

We are living in exciting times. With the development of the IoT making it possible to connect devices and make smart homes, smart businesses, smart cars and smart cities, our world is evolving into an interconnected network designed to make life easier. In previous posts, we’ve explored the IoT and antennas, the Industrial IoT (IIoT) and how the IIoT is changing manufacturing. Aside from the business aspect of the IoT, is there a greater benefit to society? Here, we’ll look at how the IoT, and all of its things, can also be used to make the world safer.

 

Today, body cameras are offering a previously unseen view into the world of policing and social media allows for crimes to be publicly documented by anyone with a smartphone. Plus, cameras and surveillance systems are already being implemented in many cities to keep a watchful eye when law enforcement isn’t physically present. Take that a step further and there are technologies being introduced that are truly transformative. Intelligent roadway systems are being utilized to direct traffic flow and manage digital signs that provide information to drivers, all to help avoid accidents and make the roads safer. This same type of technology, along with GPS, can also allow first responders to better navigate through traffic and improve response times.

 

Furthermore, with the IoT, there is a huge amount of data being collected. All of this information can be used to analyze behavior and patterns and create algorithms to identify potential crimes before they occur. Everything from past criminal activity, behavior patterns, weather patterns, social media activity and gunshot sensors can be used to inform law enforcement and help prevent crimes from taking place, or lessen the effect of the event. In fact, some cities already have technology in place that uses sensors to detect a gunshot, determine the location of shots fired and deliver that information to law enforcement within one minute. Much like a fire alarm alerts of potential danger, this system alerts of a potential active shooter situation, notifies the police and provides real-time data on where shots were fired and the layout of the location.

 

Other technology making the world safer includes self-driving cars, which remove some element of human error and could eliminate the risk that goes along with high-speed chases. Also, drones can be used to provide aerial surveillance, assess and access areas that might be too dangerous for officers or first responders to enter blindly. GPS can be used to track where someone is in a building, making it easier to find people in the event of a fire, natural disaster or other emergency situation. Plus, health monitoring devices can provide information to first responders if a victim is unresponsive. These devices might even be able to detect a health issue before it occurs.

 

There are many ways that the IoT is changing the world for the better, including safety. By using IoT technology and connecting devices to allow people to navigate this world more safely, we all win.

 

Wizarding World of Our Product Wizards

June 14, 2018 at 8:00 AM

 

Have you ever felt overwhelmed while trying to find the right parts for your application? Ever felt lost in a world full of connector, cable, antenna, adapter and amplifier options? Have you ever dreamed of being able to find exactly the product you need with the click of a mouse or touch of the screen.  Fortunately, you don’t need a magic wand for your wish to come true, our product wizards are here to help with no magical powers necessary.  

 

We have designed 18 product wizards that, just like magic, are able to determine the exact product you need. With minimal input from you, these wizards can help you navigate through a plethora of product options, taking the guesswork out of finding what’s right for your application.

 

Our product wizards are simple and easy to use. For example, to determine the perfect antenna for your application, our antenna product wizard only has 4 questions before showing you all of your antenna options:

 

1.      Select antenna frequency

 

2.      Choose type of antenna

 

 

3.      Pick antenna gain

 

 

4.      Select antenna connector

 

5.      Then behold the magic of the product wizard

 

 

Here is list of our product wizard available to use anytime and free of charge:

 

·        Adapters

·        Amplifiers

·        Antennas

·        Cable Assemblies

·        Coax Lightning Protectors

·        Connectors

·        Ethernet Converters

·        Hubs or Switches

·        KVM Switches

·        Lightning Protectors

·        Network Interface Cards

·        Rack Panels

·        Signal Filters

·        Signal Splitters

·        Switch Boxes

·        Tools

·        Weatherproof Enclosures

·        Wireless Adapters

 

No matter what your application is, our product wizards have the power to make your product search much easier and provide you with exact results in a flash.

 

© L-com, Inc. All Rights Reserved. L-com, Inc., 50 High Street, West Mill, Third Floor, Suite 30, North Andover, MA 01845